IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0231536.html
   My bibliography  Save this article

Comparative analysis of the CO2 emissions of expressway and arterial road traffic: A case in Beijing

Author

Listed:
  • Ji Zheng
  • Suocheng Dong
  • Yingjie Hu
  • Yu Li

Abstract

Urban traffic is an important source of global CO2 emissions. Uncovering the temporal and structural characteristics can provide scientific support to identify the variation regulation and main subjects of urban traffic CO2 emissions. The road class is one of the most important factors influencing the urban traffic CO2 emissions. Based on the annual traffic field monitoring work in 2014 and the localized MOVES model, this study unravels the temporal variation and structural characteristics of the urban traffic CO2 emissions and conducts a comparative analysis of expressway (5R) and arterial road (DB), two typical classes of urban roads in Beijing. Obvious differences exist in the temporal variation characteristics of the traffic CO2 emissions between the expressway and arterial road at the annual, week and daily scales. The annual traffic CO2 emissions at the expressway (5R, with 47271.15 t) are more than ten times than those of the arterial road (DB, with 4139.19 t). Stronger weekly “rest effect” is observed at the expressway than the arterial road. The daily peak time and duration of the traffic CO2 emissions between the two classes of urban roads show significant differences particular in the evening peak. The differences of the structural characteristics between the two classes of urban roads are mainly reflected on the contribution of the public and freight transportation. Passenger vehicles play a predominant role at both the two classes of urban roads. The public transportation contributed more at DB (24.76%) than 5R (5.47%), and the freight transportation contributed more at 5R (23.41%) than DB (3.49%). The results suggest that the influence of traffic CO2 emissions on the CO2 flux is significant at the residential and commercial mixed underlying urban areas with arterial roads (DB) but not significant at the underlying urban park area with expressway (5R) in this study. The vegetation cover in urban areas have effects on the CO2 reduction. Increasing the design and construction of the green space along the urban roads with busy traffic flow will be an effective way to mitigate the urban traffic CO2 emissions and build the low-carbon cities.

Suggested Citation

  • Ji Zheng & Suocheng Dong & Yingjie Hu & Yu Li, 2020. "Comparative analysis of the CO2 emissions of expressway and arterial road traffic: A case in Beijing," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-15, April.
  • Handle: RePEc:plo:pone00:0231536
    DOI: 10.1371/journal.pone.0231536
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231536
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0231536&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0231536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Loo, Becky P.Y. & Banister, David, 2016. "Decoupling transport from economic growth: Extending the debate to include environmental and social externalities," Journal of Transport Geography, Elsevier, vol. 57(C), pages 134-144.
    2. Focas, Caralampo, 2016. "Travel behaviour and CO2 emissions in urban and exurban London and New York," Transport Policy, Elsevier, vol. 46(C), pages 82-91.
    3. Ji Zheng & Yingjie Hu & Suocheng Dong & Yu Li, 2019. "The Spatiotemporal Pattern of Decoupling Transport CO 2 Emissions from Economic Growth across 30 Provinces in China," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    4. Li, Yu & Zheng, Ji & Li, Zehong & Yuan, Liang & Yang, Yang & Li, Fujia, 2017. "Re-estimating CO2 emission factors for gasoline passenger cars adding driving behaviour characteristics——A case study of Beijing," Energy Policy, Elsevier, vol. 102(C), pages 353-361.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji Zheng & Yingjie Hu & Suocheng Dong & Yu Li, 2019. "The Spatiotemporal Pattern of Decoupling Transport CO 2 Emissions from Economic Growth across 30 Provinces in China," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    2. Dan Meng & Yu Li & Ji Zheng & Zehong Li & Haipeng Ye & Shifeng Li, 2021. "Decoupling Analysis of CO 2 Emissions in the Industrial Sector from Economic Growth in China," Energies, MDPI, vol. 14(16), pages 1-15, August.
    3. O'Driscoll, Conor & Crowley, Frank & Doran, Justin & McCarthy, Nóirín, 2022. "Retail sprawl and CO2 emissions: Retail centres in Irish cities," Journal of Transport Geography, Elsevier, vol. 102(C).
    4. Hongchang Li & Jack Strauss & Lihong Liu, 2019. "A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint," Sustainability, MDPI, vol. 11(7), pages 1-24, April.
    5. Ben Dror, Maya & Qin, Lanzhi & An, Feng, 2019. "The gap between certified and real-world passenger vehicle fuel consumption in China measured using a mobile phone application data," Energy Policy, Elsevier, vol. 128(C), pages 8-16.
    6. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    7. Lijun Zhang & Caiyun Kou & Ji Zheng & Yu Li, 2018. "Decoupling Analysis of CO 2 Emissions in Transportation Sector from Economic Growth during 1995–2015 for Six Cities in Hebei, China," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    8. Saxena, Aditya & Gupta, Vallary, 2023. "Carpooling: Who is closest to adopting it? An investigation into the potential car-poolers among private vehicle users: A case of a developing country, India," Transport Policy, Elsevier, vol. 135(C), pages 11-20.
    9. Ángela García-Alaminos & Fabio Monsalve & Jorge Zafrilla & Maria-Angeles Cadarso, 2020. "Unmasking social distant damage of developed regions’ lifestyle: A decoupling analysis of the indecent labour footprint," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-17, April.
    10. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
    11. Yong Wang & Yu Zhou & Lin Zhu & Fei Zhang & Yingchun Zhang, 2018. "Influencing Factors and Decoupling Elasticity of China’s Transportation Carbon Emissions," Energies, MDPI, vol. 11(5), pages 1-29, May.
    12. Mogno, Caterina & Fontaras, Georgios & Arcidiacono, Vincenzo & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio & Makridis, Michail & Valverde, Victor, 2022. "The application of the CO2MPAS model for vehicle CO2 emissions estimation over real traffic conditions," Transport Policy, Elsevier, vol. 124(C), pages 152-159.
    13. Leung, Kevin Y.K. & Astroza, Sebastian & Loo, Becky P.Y. & Bhat, Chandra R., 2019. "An environment-people interactions framework for analysing children's extra-curricular activities and active transport," Journal of Transport Geography, Elsevier, vol. 74(C), pages 341-358.
    14. Lane, Bradley W., 2019. "Revisiting ‘An unpopular essay on transportation:’ The outcomes of old myths and the implications of new technologies for the sustainability of transport," Journal of Transport Geography, Elsevier, vol. 81(C).
    15. Gangfei Luo & Tomas Baležentis & Shouzhen Zeng & JiaShun Pan, 2023. "Creating a decarbonized economy: Decoupling effects and driving factors of CO2 emission of 28 industries in China," Energy & Environment, , vol. 34(7), pages 2413-2431, November.
    16. Yang, Lin & Yang, Yuantao & Zhang, Xian & Tang, Kai, 2018. "Whether China's industrial sectors make efforts to reduce CO2 emissions from production? - A decomposed decoupling analysis," Energy, Elsevier, vol. 160(C), pages 796-809.
    17. Yang Zhou & Chunyang Tong & Yongsheng Wang, 2022. "Road construction, economic growth, and poverty alleviation in China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1306-1332, September.
    18. Loo, Becky P.Y. & Tsoi, Ka Ho & Banister, David, 2020. "Recent experiences and divergent pathways to transport decoupling," Journal of Transport Geography, Elsevier, vol. 88(C).
    19. Luqi Wang & Xiaolong Xue & Zebin Zhao & Zeyu Wang, 2018. "The Impacts of Transportation Infrastructure on Sustainable Development: Emerging Trends and Challenges," IJERPH, MDPI, vol. 15(6), pages 1-24, June.
    20. Jingjing Liu & Hongwei Ge & Jiajie Li & Pengcheng He & Zhangang Hao & Michael Hitch, 2022. "How Can Sustainable Public Transport Be Improved? A Traffic Sign Recognition Approach Using Convolutional Neural Network," Energies, MDPI, vol. 15(19), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0231536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.