IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v134y2017icp458-468.html
   My bibliography  Save this article

Supporting involvement of electric vehicles in distribution grids: Lowering the barriers for a proactive integration

Author

Listed:
  • Knezović, Katarina
  • Marinelli, Mattia
  • Zecchino, Antonio
  • Andersen, Peter Bach
  • Traeholt, Chresten

Abstract

Increasing environmental concerns are driving an evolution of the energy system in which electric vehicles (EVs) play an important role. Still, as the EV number increases, the adverse impact of charging is observed more widely, especially at the low-voltage level where high EV concentrations cause various detrimental effects due to the coincidence between EV charging and residential peak load. However, if managed properly, EVs become flexible resources which can improve the system operation, making them an attractive asset for the distribution system operator. With the recent technology development, new forms of local EV support can be developed, provided that an appropriate regulatory framework is established. Whereas the technical value of such EV distribution grid services has already been proven, integrating them into the European regulatory context is not straightforward. In the context where active distribution grid management schemes are still to be developed, it is important to recognise the barriers for active EV involvement in the early stage of the development. This manuscript focuses on identifying these barriers from a technology and infrastructure perspective as well as from the regulatory and market aspect. Various policy recommendations are provided for the stakeholders involved in the EV value chain.

Suggested Citation

  • Knezović, Katarina & Marinelli, Mattia & Zecchino, Antonio & Andersen, Peter Bach & Traeholt, Chresten, 2017. "Supporting involvement of electric vehicles in distribution grids: Lowering the barriers for a proactive integration," Energy, Elsevier, vol. 134(C), pages 458-468.
  • Handle: RePEc:eee:energy:v:134:y:2017:i:c:p:458-468
    DOI: 10.1016/j.energy.2017.06.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217310691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramos Muñoz, Edgar & Razeghi, Ghazal & Zhang, Li & Jabbari, Faryar, 2016. "Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels," Energy, Elsevier, vol. 113(C), pages 930-942.
    2. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    3. Lopes Ferreira, H. & Costescu, A. & L'Abbate, A. & Minnebo, P. & Fulli, G., 2011. "Distributed generation and distribution market diversity in Europe," Energy Policy, Elsevier, vol. 39(9), pages 5561-5571, September.
    4. Lo Schiavo, Luca & Delfanti, Maurizio & Fumagalli, Elena & Olivieri, Valeria, 2013. "Changing the regulation for regulating the change: Innovation-driven regulatory developments for smart grids, smart metering and e-mobility in Italy," Energy Policy, Elsevier, vol. 57(C), pages 506-517.
    5. Hu, Junjie & Morais, Hugo & Sousa, Tiago & Lind, Morten, 2016. "Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1207-1226.
    6. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    7. Katz, Jonas, 2014. "Linking meters and markets: Roles and incentives to support a flexible demand side," Utilities Policy, Elsevier, vol. 31(C), pages 74-84.
    8. Eid, Cherrelle & Bollinger, L. Andrew & Koirala, Binod & Scholten, Daniel & Facchinetti, Emanuele & Lilliestam, Johan & Hakvoort, Rudi, 2016. "Market integration of local energy systems: Is local energy management compatible with European regulation for retail competition?," Energy, Elsevier, vol. 114(C), pages 913-922.
    9. Cambini, Carlo & Meletiou, Alexis & Bompard, Ettore & Masera, Marcelo, 2016. "Market and regulatory factors influencing smart-grid investment in Europe: Evidence from pilot projects and implications for reform," Utilities Policy, Elsevier, vol. 40(C), pages 36-47.
    10. Marques, Vítor & Bento, Nuno & Costa, Paulo Moisés, 2014. "The “Smart Paradox”: Stimulate the deployment of smart grids with effective regulatory instruments," Energy, Elsevier, vol. 69(C), pages 96-103.
    11. García-Villalobos, J. & Zamora, I. & San Martín, J.I. & Asensio, F.J. & Aperribay, V., 2014. "Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 717-731.
    12. San Román, Tomás Gómez & Momber, Ilan & Abbad, Michel Rivier & Sánchez Miralles, Álvaro, 2011. "Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships," Energy Policy, Elsevier, vol. 39(10), pages 6360-6375, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moisés Antón García & Ana Isabel Martínez García & Stylianos Karatzas & Athanasios Chassiakos & Olympia Ageli, 2023. "SGAM-Based Analysis for the Capacity Optimization of Smart Grids Utilizing e-Mobility: The Use Case of Booking a Charge Session," Energies, MDPI, vol. 16(5), pages 1-17, March.
    2. Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Promoting Vehicle to Grid (V2G) in the Nordic region: Expert advice on policy mechanisms for accelerated diffusion," Energy Policy, Elsevier, vol. 116(C), pages 422-432.
    3. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Hipolito, F. & Vandet, C.A. & Rich, J., 2022. "Charging, steady-state SoC and energy storage distributions for EV fleets," Applied Energy, Elsevier, vol. 317(C).
    5. Qiu, Yueming Lucy & Wang, Yi David & Iseki, Hiroyuki & Shen, Xingchi & Xing, Bo & Zhang, Huiming, 2022. "Empirical grid impact of in-home electric vehicle charging differs from predictions," Resource and Energy Economics, Elsevier, vol. 67(C).
    6. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    7. Bergaentzle, Claire & Gunkel, Philipp Andreas, 2022. "Cross-sector flexibility, storage investment and the integration of renewables: Capturing the impacts of grid tariffs," Energy Policy, Elsevier, vol. 164(C).
    8. Konstantina Valogianni & Wolfgang Ketter & John Collins & Dmitry Zhdanov, 2020. "Sustainable Electric Vehicle Charging using Adaptive Pricing," Production and Operations Management, Production and Operations Management Society, vol. 29(6), pages 1550-1572, June.
    9. Gschwendtner, Christine & Sinsel, Simon R. & Stephan, Annegret, 2021. "Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Englberger, Stefan & Abo Gamra, Kareem & Tepe, Benedikt & Schreiber, Michael & Jossen, Andreas & Hesse, Holger, 2021. "Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context," Applied Energy, Elsevier, vol. 304(C).
    11. Stavros Lazarou & Vasiliki Vita & Christos Christodoulou & Lambros Ekonomou, 2018. "Calculating Operational Patterns for Electric Vehicle Charging on a Real Distribution Network Based on Renewables’ Production," Energies, MDPI, vol. 11(9), pages 1-15, September.
    12. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    13. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    14. Karim L. Anaya & Monica Giulietti & Michael G. Pollitt, 2022. "Where next for the electricity distribution system operator? Evidence from a survey of European DSOs and National Regulatory Authorities," Competition and Regulation in Network Industries, , vol. 23(4), pages 245-269, December.
    15. Patrick Dossow & Maximilian Hampel, 2023. "Synergies of Electric Vehicle Multi-Use: Analyzing the Implementation Effort for Use Case Combinations in Smart E-Mobility," Energies, MDPI, vol. 16(5), pages 1-35, March.
    16. Rayhane Koubaa & Yeliz Yoldas & Selcuk Goren & Lotfi Krichen & Ahmet Onen, 2021. "Implementation of cost benefit analysis of vehicle to grid coupled real Micro-Grid by considering battery energy wear: Practical study case," Energy & Environment, , vol. 32(7), pages 1292-1314, November.
    17. Miguel Carrión & Rafael Zárate-Miñano & Ruth Domínguez, 2020. "Integration of Electric Vehicles in Low-Voltage Distribution Networks Considering Voltage Management," Energies, MDPI, vol. 13(16), pages 1-23, August.
    18. Li, Pengfei & Hu, Weihao & Xu, Xiao & Huang, Qi & Liu, Zhou & Chen, Zhe, 2019. "A frequency control strategy of electric vehicles in microgrid using virtual synchronous generator control," Energy, Elsevier, vol. 189(C).
    19. Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Carlo Corinaldesi & Georg Lettner & Daniel Schwabeneder & Amela Ajanovic & Hans Auer, 2020. "Impact of Different Charging Strategies for Electric Vehicles in an Austrian Office Site," Energies, MDPI, vol. 13(22), pages 1-17, November.
    21. Alexandra Märtz & Uwe Langenmayr & Sabrina Ried & Katrin Seddig & Patrick Jochem, 2022. "Charging Behavior of Electric Vehicles: Temporal Clustering Based on Real-World Data," Energies, MDPI, vol. 15(18), pages 1-26, September.
    22. Stavros Lazarou & Vasiliki Vita & Lambros Ekonomou, 2018. "Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niesten, Eva & Alkemade, Floortje, 2016. "How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 629-638.
    2. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    3. Rabiee, Abdorreza & Sadeghi, Mohammad & Aghaeic, Jamshid & Heidari, Alireza, 2016. "Optimal operation of microgrids through simultaneous scheduling of electrical vehicles and responsive loads considering wind and PV units uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 721-739.
    4. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Stefano Rinaldi & Marco Pasetti & Emiliano Sisinni & Federico Bonafini & Paolo Ferrari & Mattia Rizzi & Alessandra Flammini, 2018. "On the Mobile Communication Requirements for the Demand-Side Management of Electric Vehicles," Energies, MDPI, vol. 11(5), pages 1-27, May.
    6. Chiehyeon Lim & Paul P. Maglio, 2018. "Data-Driven Understanding of Smart Service Systems Through Text Mining," Service Science, INFORMS, vol. 10(2), pages 154-180, June.
    7. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    8. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    9. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    10. Konstantina Valogianni & Wolfgang Ketter & John Collins & Dmitry Zhdanov, 2020. "Sustainable Electric Vehicle Charging using Adaptive Pricing," Production and Operations Management, Production and Operations Management Society, vol. 29(6), pages 1550-1572, June.
    11. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    12. Heilmann, C. & Friedl, G., 2021. "Factors influencing the economic success of grid-to-vehicle and vehicle-to-grid applications—A review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Steffen Limmer, 2019. "Dynamic Pricing for Electric Vehicle Charging—A Literature Review," Energies, MDPI, vol. 12(18), pages 1-24, September.
    14. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    15. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    16. Hu, Junjie & Morais, Hugo & Sousa, Tiago & Lind, Morten, 2016. "Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1207-1226.
    17. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    19. Khaled Shuaib & Ezedin Barka & Juhar Ahmed Abdella & Farag Sallabi & Mohammed Abdel-Hafez & Ala Al-Fuqaha, 2017. "Secure Plug-in Electric Vehicle (PEV) Charging in a Smart Grid Network," Energies, MDPI, vol. 10(7), pages 1-23, July.
    20. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:134:y:2017:i:c:p:458-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.