IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v100y2016icp102-114.html
   My bibliography  Save this article

Endogenizing the probability of nuclear exit in an optimal power-generation mix model

Author

Listed:
  • Kosugi, Takanobu

Abstract

A major accident at a nuclear power reactor can lower public acceptance of this energy source and may result in a nuclear exit. This paper proposes an optimal power-generation planning model that deals explicitly with the costs involved in changing the power-generation mix due to a nuclear exit. The model introduces the probability of a major accident leading to a nuclear exit at a future time period as an endogenous variable, which is determined depending on the amount of nuclear power being generated during the preceding period. The proposed model is formulated as a stochastic programming problem that aims to minimize the expected value of overall power-generation costs computed with a weighted probability of every future state, branched according to a possible nuclear exit at each time period. An application of the model quantitatively implies that less nuclear dependency is optimal for a higher assumed frequency of a major accident per generated unit of electrical energy from nuclear—not only for the cost of direct damage from the accident, but largely because of the increased cost of overall power generation due to the subsequent nuclear exit. To put it differently, lowering the frequency of a major nuclear accident per reactor·year brings benefits exceeding the conventionally perceived effect of reducing an accident's direct damage. Lowering the major accident frequency to one per 106 reactor·years would free the optimal planning of future electricity supply from influence of an accident causing nuclear exit, if the geographical scale of the exit were limited to one-twentieth of the entire world.

Suggested Citation

  • Kosugi, Takanobu, 2016. "Endogenizing the probability of nuclear exit in an optimal power-generation mix model," Energy, Elsevier, vol. 100(C), pages 102-114.
  • Handle: RePEc:eee:energy:v:100:y:2016:i:c:p:102-114
    DOI: 10.1016/j.energy.2016.01.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421630007X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.01.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de-Llano Paz, Fernando & Antelo, Susana Iglesias & Calvo Silvosa, Anxo & Soares, Isabel, 2014. "The technological and environmental efficiency of the EU-27 power mix: An evaluation based on MPT," Energy, Elsevier, vol. 69(C), pages 67-81.
    2. Yuan, Jiahai & Xu, Yan & Kang, Junjie & Zhang, Xingping & Hu, Zheng, 2014. "Nonlinear integrated resource strategic planning model and case study in China's power sector planning," Energy, Elsevier, vol. 67(C), pages 27-40.
    3. Seddighi, Amir Hossein & Ahmadi-Javid, Amir, 2015. "Integrated multiperiod power generation and transmission expansion planning with sustainability aspects in a stochastic environment," Energy, Elsevier, vol. 86(C), pages 9-18.
    4. Rabl, Ari & Rabl, Veronika A., 2013. "External costs of nuclear: Greater or less than the alternatives?," Energy Policy, Elsevier, vol. 57(C), pages 575-584.
    5. Siegrist, Michael & Sütterlin, Bernadette & Keller, Carmen, 2014. "Why have some people changed their attitudes toward nuclear power after the accident in Fukushima?," Energy Policy, Elsevier, vol. 69(C), pages 356-363.
    6. Csereklyei, Zsuzsanna, 2014. "Measuring the impact of nuclear accidents on energy policy," Ecological Economics, Elsevier, vol. 99(C), pages 121-129.
    7. Vicki Duscha & Katja Schumacher & Joachim Schleich & Pierre Buisson, 2014. "Costs of meeting international climate targets without nuclear power," Climate Policy, Taylor & Francis Journals, vol. 14(3), pages 327-352, May.
    8. Enrica Cian & Samuel Carrara & Massimo Tavoni, 2014. "Innovation benefits from nuclear phase-out: can they compensate the costs?," Climatic Change, Springer, vol. 123(3), pages 637-650, April.
    9. Kannan, Ramachandran & Turton, Hal, 2012. "Cost of ad-hoc nuclear policy uncertainties in the evolution of the Swiss electricity system," Energy Policy, Elsevier, vol. 50(C), pages 391-406.
    10. Kosugi, Takanobu & Tokimatsu, Koji & Kurosawa, Atsushi & Itsubo, Norihiro & Yagita, Hiroshi & Sakagami, Masaji, 2009. "Internalization of the external costs of global environmental damage in an integrated assessment model," Energy Policy, Elsevier, vol. 37(7), pages 2664-2678, July.
    11. Paul L. Joskow & John E. Parsons, 2012. "The Future of Nuclear Power After Fukushima," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    12. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    13. Takanobu Kosugi, 2013. "Fail-safe solar radiation management geoengineering," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(8), pages 1141-1166, December.
    14. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2012. "Economic and environmental analysis of power generation expansion in Japan considering Fukushima nuclear accident using a multi-objective optimization model," Energy, Elsevier, vol. 44(1), pages 986-995.
    15. Zheng, Yanan & Hu, Zhaoguang & Wang, Jianhui & Wen, Quan, 2014. "IRSP (integrated resource strategic planning) with interconnected smart grids in integrating renewable energy and implementing DSM (demand side management) in China," Energy, Elsevier, vol. 76(C), pages 863-874.
    16. Tokimatsu, Koji & Kosugi, Takanobu & Asami, Takayoshi & Williams, Eric & Kaya, Yoichi, 2006. "Evaluation of lifecycle CO2 emissions from the Japanese electric power sector in the 21st century under various nuclear scenarios," Energy Policy, Elsevier, vol. 34(7), pages 833-852, May.
    17. Sheldon, Seth & Hadian, Saeed & Zik, Ory, 2015. "Beyond carbon: Quantifying environmental externalities as energy for hydroelectric and nuclear power," Energy, Elsevier, vol. 84(C), pages 36-44.
    18. Bruninx, Kenneth & Madzharov, Darin & Delarue, Erik & D'haeseleer, William, 2013. "Impact of the German nuclear phase-out on Europe's electricity generation—A comprehensive study," Energy Policy, Elsevier, vol. 60(C), pages 251-261.
    19. Silva, Kampanart & Ishiwatari, Yuki & Takahara, Shogo, 2014. "Cost per severe accident as an index for severe accident consequence assessment and its applications," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 110-122.
    20. Rafaj, Peter & Kypreos, Socrates, 2007. "Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model," Energy Policy, Elsevier, vol. 35(2), pages 828-843, February.
    21. Hayashi, Masatsugu & Hughes, Larry, 2013. "The Fukushima nuclear accident and its effect on global energy security," Energy Policy, Elsevier, vol. 59(C), pages 102-111.
    22. Hughes, Larry, 2015. "The effects of event occurrence and duration on resilience and adaptation in energy systems," Energy, Elsevier, vol. 84(C), pages 443-454.
    23. Sovacool, Benjamin K. & Kryman, Matthew & Laine, Emily, 2015. "Profiling technological failure and disaster in the energy sector: A comparative analysis of historical energy accidents," Energy, Elsevier, vol. 90(P2), pages 2016-2027.
    24. Nakata, T, 2002. "Analysis of the impacts of nuclear phase-out on energy systems in Japan," Energy, Elsevier, vol. 27(4), pages 363-377.
    25. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2013. "Evaluating options for sustainable energy mixes in South Korea using scenario analysis," Energy, Elsevier, vol. 52(C), pages 237-244.
    26. Csereklyei, Z., 2014. "Measuring the Impact of Nuclear Accidents on Energy Policy," 2014 Conference (58th), February 4-7, 2014, Port Macquarie, Australia 165825, Australian Agricultural and Resource Economics Society.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ning & Hu, Zhaoguang & Shen, Bo & He, Gang & Zheng, Yanan, 2017. "An integrated source-grid-load planning model at the macro level: Case study for China's power sector," Energy, Elsevier, vol. 126(C), pages 231-246.
    2. Carlos Roberto de Sousa Costa & Paula Ferreira, 2023. "A Review on the Internalization of Externalities in Electricity Generation Expansion Planning," Energies, MDPI, vol. 16(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsiao, Cody Yu-Ling & Chen, Hsing Hung, 2018. "The contagious effects on economic development after resuming construction policy for nuclear power plants in Coastal China," Energy, Elsevier, vol. 152(C), pages 291-302.
    2. Csereklyei, Zsuzsanna & Thurner, Paul W. & Bauer, Alexander & Küchenhoff, Helmut, 2016. "The effect of economic growth, oil prices, and the benefits of reactor standardization: Duration of nuclear power plant construction revisited," Energy Policy, Elsevier, vol. 91(C), pages 49-59.
    3. Furlan, Claudia & Guidolin, Mariangela & Guseo, Renato, 2016. "Has the Fukushima accident influenced short-term consumption in the evolution of nuclear energy? An analysis of the world and seven leading countries," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 37-49.
    4. Zhang, Ning & Hu, Zhaoguang & Shen, Bo & He, Gang & Zheng, Yanan, 2017. "An integrated source-grid-load planning model at the macro level: Case study for China's power sector," Energy, Elsevier, vol. 126(C), pages 231-246.
    5. Ming, Zeng & Yingxin, Liu & Shaojie, Ouyang & Hui, Shi & Chunxue, Li, 2016. "Nuclear energy in the Post-Fukushima Era: Research on the developments of the Chinese and worldwide nuclear power industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 147-156.
    6. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    7. Csereklyei, Zsuzsanna, 2014. "Measuring the impact of nuclear accidents on energy policy," Ecological Economics, Elsevier, vol. 99(C), pages 121-129.
    8. Yuan, Jiahai & Lei, Qi & Xiong, Minpeng & Guo, Jingsheng & Hu, Zheng, 2016. "The prospective of coal power in China: Will it reach a plateau in the coming decade?," Energy Policy, Elsevier, vol. 98(C), pages 495-504.
    9. KAWAGUCHI, Daiji & 川口, 大司 & YUKUTAKE, Norifumi & 行武, 憲史, 2014. "Estimating the Residential Land Damage of the Fukushima Accident," Discussion Papers 2014-18, Graduate School of Economics, Hitotsubashi University.
    10. Wang, Hongxia & Zhang, Junfeng & Fang, Hong, 2017. "Electricity footprint of China’s industrial sectors and its socioeconomic drivers," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 98-106.
    11. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2015. "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Elsevier, vol. 143(C), pages 451-459.
    12. Friedrich Kunz and Hannes Weigt, 2014. "Germanys Nuclear Phase Out - A Survey of the Impact since 2011 and Outlook to 2023," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    13. Ning Zhang & Hongcai Dai & Yaohua Wang & Yunzhou Zhang & Yuqing Yang, 2021. "Power system transition in China under the coordinated development of power sources, network, demand response, and energy storage," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(2), March.
    14. Fu, Z.H. & Xie, Y.L. & Li, W. & Lu, W.T. & Guo, H.C., 2017. "An inexact multi-objective programming model for an economy-energy-environment system under uncertainty: A case study of Urumqi, China," Energy, Elsevier, vol. 126(C), pages 165-178.
    15. Laura Rodríguez-Penalonga & B. Yolanda Moratilla Soria, 2017. "A Review of the Nuclear Fuel Cycle Strategies and the Spent Nuclear Fuel Management Technologies," Energies, MDPI, vol. 10(8), pages 1-16, August.
    16. Fahlén, E. & Ahlgren, E.O., 2010. "Accounting for external costs in a study of a Swedish district-heating system - An assessment of environmental policies," Energy Policy, Elsevier, vol. 38(9), pages 4909-4920, September.
    17. Carlos Roberto de Sousa Costa & Paula Ferreira, 2023. "A Review on the Internalization of Externalities in Electricity Generation Expansion Planning," Energies, MDPI, vol. 16(4), pages 1-19, February.
    18. Evgenidis, Anastasios & Hamano, Masashige & Vermeulen, Wessel N., 2021. "Economic consequences of follow-up disasters: Lessons from the 2011 Great East Japan Earthquake," Energy Economics, Elsevier, vol. 104(C).
    19. Carvallo, Juan Pablo & Sanstad, Alan H. & Larsen, Peter H., 2019. "Exploring the relationship between planning and procurement in western U.S. electric utilities," Energy, Elsevier, vol. 183(C), pages 4-15.
    20. Nian, Victor & Chou, S.K., 2014. "The state of nuclear power two years after Fukushima – The ASEAN perspective," Applied Energy, Elsevier, vol. 136(C), pages 838-848.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:100:y:2016:i:c:p:102-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.