IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v50y2012icp391-406.html
   My bibliography  Save this article

Cost of ad-hoc nuclear policy uncertainties in the evolution of the Swiss electricity system

Author

Listed:
  • Kannan, Ramachandran
  • Turton, Hal

Abstract

About one-third of the Swiss nuclear capacity is due to be retired in the next ten years, creating a short-term supply gap. In addition, the Swiss Federal Council has decided to phase out nuclear power over the longer term by not replacing existing nuclear power plants after retirement. We have analysed possible electricity supply options for responding to these two developments under different conditions using the Swiss TIMES electricity sector model—a least-cost optimization framework. Short-term demand can be cost-effectively met with new investment in gas-fired generation capacity. However, meeting the government’s CO2 emission and renewable electricity targets requires an accelerated investment in renewable generation and/or increased reliance on imported electricity. In the medium and longer term, nuclear represents the most cost-effective option. The alternatives to nuclear lead to increased dependence on imported natural gas, seasonal renewables and imported electricity. All non-nuclear supply options increase the cost of electricity supply by between 50 and 150%, and create a range of tradeoffs between supply security and climate change mitigation goal. However, it is expected that an accelerated uptake of end-use efficiency measures and demand side management would reduce future electricity demand, thus reducing the need for some expensive supply options.

Suggested Citation

  • Kannan, Ramachandran & Turton, Hal, 2012. "Cost of ad-hoc nuclear policy uncertainties in the evolution of the Swiss electricity system," Energy Policy, Elsevier, vol. 50(C), pages 391-406.
  • Handle: RePEc:eee:enepol:v:50:y:2012:i:c:p:391-406
    DOI: 10.1016/j.enpol.2012.07.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512006271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.07.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kannan, R., 2009. "Uncertainties in key low carbon power generation technologies - Implication for UK decarbonisation targets," Applied Energy, Elsevier, vol. 86(10), pages 1873-1886, October.
    2. Schulz, Thorsten F. & Kypreos, Socrates & Barreto, Leonardo & Wokaun, Alexander, 2008. "Intermediate steps towards the 2000Â W society in Switzerland: An energy-economic scenario analysis," Energy Policy, Elsevier, vol. 36(4), pages 1303-1317, April.
    3. Nicolas Weidmann & Ramachandran Kannan & Hal Turton, 2012. "Swiss Climate Change and Nuclear Policy: A Comparative Analysis Using an Energy System Approach and a Sectoral Electricity Model," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 275-316, June.
    4. Kannan, Ramachandran, 2011. "The development and application of a temporal MARKAL energy system model using flexible time slicing," Applied Energy, Elsevier, vol. 88(6), pages 2261-2272, June.
    5. Ochoa, Patricia & van Ackere, Ann, 2009. "Policy changes and the dynamics of capacity expansion in the Swiss electricity market," Energy Policy, Elsevier, vol. 37(5), pages 1983-1998, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kosugi, Takanobu, 2016. "Endogenizing the probability of nuclear exit in an optimal power-generation mix model," Energy, Elsevier, vol. 100(C), pages 102-114.
    2. Schlecht, Ingmar & Weigt, Hannes, 2014. "Swissmod - a model of the Swiss electricity market," Working papers 2014/04, Faculty of Business and Economics - University of Basel.
    3. Ramachandran Kannan & Evangelos Panos & Stefan Hirschberg & Tom Kober, 2022. "A net‐zero Swiss energy system by 2050: Technological and policy options for the transition of the transportation sector," Futures & Foresight Science, John Wiley & Sons, vol. 4(3-4), September.
    4. Pattupara, Rajesh & Kannan, Ramachandran, 2016. "Alternative low-carbon electricity pathways in Switzerland and it’s neighbouring countries under a nuclear phase-out scenario," Applied Energy, Elsevier, vol. 172(C), pages 152-168.
    5. Malischek, Raimund & Trüby, Johannes, 2016. "The future of nuclear power in France: an analysis of the costs of phasing-out," Energy, Elsevier, vol. 116(P1), pages 908-921.
    6. Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Gencer, Busra & Larsen, Erik Reimer & van Ackere, Ann, 2020. "Understanding the coevolution of electricity markets and regulation," Energy Policy, Elsevier, vol. 143(C).
    8. Seljom, Pernille & Tomasgard, Asgeir, 2017. "The impact of policy actions and future energy prices on the cost-optimal development of the energy system in Norway and Sweden," Energy Policy, Elsevier, vol. 106(C), pages 85-102.
    9. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    10. García-Gusano, Diego & Espegren, Kari & Lind, Arne & Kirkengen, Martin, 2016. "The role of the discount rates in energy systems optimisation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 56-72.
    11. Eser, P. & Chokani, N. & Abhari, R., 2018. "Trade-offs between integration and isolation in Switzerland's energy policy," Energy, Elsevier, vol. 150(C), pages 19-27.
    12. Kannan, Ramachandran & Hirschberg, Stefan, 2016. "Interplay between electricity and transport sectors – Integrating the Swiss car fleet and electricity system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 514-531.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Weidmann & Ramachandran Kannan & Hal Turton, 2012. "Swiss Climate Change and Nuclear Policy: A Comparative Analysis Using an Energy System Approach and a Sectoral Electricity Model," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 275-316, June.
    2. Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Andersen, Kristoffer Steen & Wiese, Catharina & Petrovic, Stefan & McKenna, Russell, 2020. "Exploring the role of households’ hurdle rates and demand elasticities in meeting Danish energy-savings target," Energy Policy, Elsevier, vol. 146(C).
    4. García-Gusano, Diego & Espegren, Kari & Lind, Arne & Kirkengen, Martin, 2016. "The role of the discount rates in energy systems optimisation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 56-72.
    5. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    6. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Kinoshita, Tsuguki & Ohki, Takashi & Yamagata, Yoshiki, 2010. "Woody biomass supply potential for thermal power plants in Japan," Applied Energy, Elsevier, vol. 87(9), pages 2923-2927, September.
    9. Trutnevyte, Evelina & Stauffacher, Michael & Scholz, Roland W., 2012. "Linking stakeholder visions with resource allocation scenarios and multi-criteria assessment," European Journal of Operational Research, Elsevier, vol. 219(3), pages 762-772.
    10. Chaudry, Modassar & Abeysekera, Muditha & Hosseini, Seyed Hamid Reza & Jenkins, Nick & Wu, Jianzhong, 2015. "Uncertainties in decarbonising heat in the UK," Energy Policy, Elsevier, vol. 87(C), pages 623-640.
    11. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    13. Ali, Ghaffar & Abbas, Sawaid & Mueen Qamer, Faisal, 2013. "How effectively low carbon society development models contribute to climate change mitigation and adaptation action plans in Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 632-638.
    14. Ashina, Shuichi & Fujino, Junichi & Masui, Toshihiko & Ehara, Tomoki & Hibino, Go, 2012. "A roadmap towards a low-carbon society in Japan using backcasting methodology: Feasible pathways for achieving an 80% reduction in CO2 emissions by 2050," Energy Policy, Elsevier, vol. 41(C), pages 584-598.
    15. Bartlett, Stuart & Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Manso, Pedro & Lehning, Michael, 2018. "Charting the course: A possible route to a fully renewable Swiss power system," Energy, Elsevier, vol. 163(C), pages 942-955.
    16. Shmelev, Stanislav E. & van den Bergh, Jeroen C.J.M., 2016. "Optimal diversity of renewable energy alternatives under multiple criteria: An application to the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 679-691.
    17. Avinash Vijay & Adam Hawkes, 2017. "The Techno-Economics of Small-Scale Residential Heating in Low Carbon Futures," Energies, MDPI, vol. 10(11), pages 1-23, November.
    18. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    19. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    20. Anandarajah, Gabrial & Strachan, Neil, 2010. "Interactions and implications of renewable and climate change policy on UK energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6724-6735, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:50:y:2012:i:c:p:391-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.