IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v150y2018icp19-27.html
   My bibliography  Save this article

Trade-offs between integration and isolation in Switzerland's energy policy

Author

Listed:
  • Eser, P.
  • Chokani, N.
  • Abhari, R.

Abstract

In response to the Fukushima nuclear accident, Switzerland has targeted to phase out nuclear power by 2050. Two diametrically opposite pathways to accomplish Switzerland's nuclear phase-out are quantitatively investigated for the year 2035 using a novel high-resolution power systems simulation framework. The first pathway, “Island in Europe”, installs new natural gas power plants to ensure a self-sufficient Swiss energy system. The second pathway, “Battery of Europe”, increases Switzerland's engagement with central Europe with new pumped hydro storages and increased cross-border electricity trade of European renewable energy. The results show that the “Battery of Europe” scenario enables a threefold increase in financial surplus of cross-border electricity trade compared to the “Island in Europe” scenario. This surplus translates to 15–23% lower domestic Swiss electricity prices, thereby enhancing the competitiveness of the Swiss marketplace; however, Switzerland is then exposed to more technical and political engagement with its neighbours. Additionally, successful implementation of the “Battery of Europe” scenario requires reinforcing 5% of the Swiss transmission grid, which necessitates more streamlined legal processes for new transmission infrastructure. Along a different political dimension, electricity price reductions of up to 22% are possible if the targeted increase of efficiency in Switzerland's energy policy is accomplished.

Suggested Citation

  • Eser, P. & Chokani, N. & Abhari, R., 2018. "Trade-offs between integration and isolation in Switzerland's energy policy," Energy, Elsevier, vol. 150(C), pages 19-27.
  • Handle: RePEc:eee:energy:v:150:y:2018:i:c:p:19-27
    DOI: 10.1016/j.energy.2018.02.139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218303736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roth, Michael Buchdahl & Jaramillo, Paulina, 2017. "Going nuclear for climate mitigation: An analysis of the cost effectiveness of preserving existing U.S. nuclear power plants as a carbon avoidance strategy," Energy, Elsevier, vol. 131(C), pages 67-77.
    2. Kannan, Ramachandran & Turton, Hal, 2012. "Cost of ad-hoc nuclear policy uncertainties in the evolution of the Swiss electricity system," Energy Policy, Elsevier, vol. 50(C), pages 391-406.
    3. Pattupara, Rajesh & Kannan, Ramachandran, 2016. "Alternative low-carbon electricity pathways in Switzerland and it’s neighbouring countries under a nuclear phase-out scenario," Applied Energy, Elsevier, vol. 172(C), pages 152-168.
    4. Malischek, Raimund & Trüby, Johannes, 2016. "The future of nuclear power in France: an analysis of the costs of phasing-out," Energy, Elsevier, vol. 116(P1), pages 908-921.
    5. Eser, Patrick & Singh, Antriksh & Chokani, Ndaona & Abhari, Reza S., 2016. "Effect of increased renewables generation on operation of thermal power plants," Applied Energy, Elsevier, vol. 164(C), pages 723-732.
    6. Osorio, Sebastian & van Ackere, Ann, 2016. "From nuclear phase-out to renewable energies in the Swiss electricity market," Energy Policy, Elsevier, vol. 93(C), pages 8-22.
    7. Fischer, Manuel, 2015. "Collaboration patterns, external shocks and uncertainty: Swiss nuclear energy politics before and after Fukushima," Energy Policy, Elsevier, vol. 86(C), pages 520-528.
    8. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Boqiang & Bae, Nuri & Bega, François, 2020. "China's Belt & Road Initiative nuclear export: Implications for energy cooperation," Energy Policy, Elsevier, vol. 142(C).
    2. Weiss, Olga & Pareschi, Giacomo & Georges, Gil & Boulouchos, Konstantinos, 2021. "The Swiss energy transition: Policies to address the Energy Trilemma," Energy Policy, Elsevier, vol. 148(PA).
    3. Wang, Wenya & Fan, L.W. & Zhou, P., 2022. "Evolution of global fossil fuel trade dependencies," Energy, Elsevier, vol. 238(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xexakis, Georgios & Hansmann, Ralph & Volken, Sandra P. & Trutnevyte, Evelina, 2020. "Models on the wrong track: Model-based electricity supply scenarios in Switzerland are not aligned with the perspectives of energy experts and the public," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Pilpola, Sannamari & Lund, Peter D., 2018. "Effect of major policy disruptions in energy system transition: Case Finland," Energy Policy, Elsevier, vol. 116(C), pages 323-336.
    3. Zimmermann, Florian & Keles, Dogan, 2022. "State or market: Investments in new nuclear power plants in France and their domestic and cross-border effects," Working Paper Series in Production and Energy 64, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    4. Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. McCauley, Darren & Brown, Antje & Rehner, Robert & Heffron, Raphael & van de Graaff, Shashi, 2018. "Energy justice and policy change: An historical political analysis of the German nuclear phase-out," Applied Energy, Elsevier, vol. 228(C), pages 317-323.
    6. Martínez-Jaramillo, Juan Esteban & van Ackere, Ann & Larsen, Erik R., 2022. "Transitioning towards a 100% solar-hydro based generation: A system dynamic approach," Energy, Elsevier, vol. 239(PD).
    7. Zimmermann, Florian & Keles, Dogan, 2023. "State or market: Investments in new nuclear power plants in France and their domestic and cross-border effects," Energy Policy, Elsevier, vol. 173(C).
    8. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    11. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    12. Kaller, Alexander & Bielen, Samantha & Marneffe, Wim, 2018. "The impact of regulatory quality and corruption on residential electricity prices in the context of electricity market reforms," Energy Policy, Elsevier, vol. 123(C), pages 514-524.
    13. SarahM. Jordaan & Afreen Siddiqi & William Kakenmaster & AliceC. Hill, 2019. "The Climate Vulnerabilities of Global Nuclear Power," Global Environmental Politics, MIT Press, vol. 19(4), pages 3-13, November.
    14. David Popp & Jacquelyn Pless & Ivan Haščič & Nick Johnstone, 2020. "Innovation and Entrepreneurship in the Energy Sector," NBER Chapters, in: The Role of Innovation and Entrepreneurship in Economic Growth, pages 175-248, National Bureau of Economic Research, Inc.
    15. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
    16. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    17. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    18. Marisol Garrouste & Michael T. Craig & Daniel Wendt & Maria Herrera Diaz & William Jenson & Qian Zhang & Brendan Kochunas, 2023. "Techno-Economic Analysis of Synthetic Fuel Production from Existing Nuclear Power Plants across the United States," Papers 2309.12085, arXiv.org.
    19. Mark Howells & Brent Boehlert & Pablo César Benitez, 2021. "Potential Climate Change Risks to Meeting Zimbabwe’s NDC Goals and How to Become Resilient," Energies, MDPI, vol. 14(18), pages 1-26, September.
    20. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:150:y:2018:i:c:p:19-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.