IDEAS home Printed from https://ideas.repec.org/a/ses/arsjes/2012-ii-7.html
   My bibliography  Save this article

Swiss Climate Change and Nuclear Policy: A Comparative Analysis Using an Energy System Approach and a Sectoral Electricity Model

Author

Listed:
  • Nicolas Weidmann
  • Ramachandran Kannan
  • Hal Turton

Abstract

Decisions on climate change and nuclear policies are likely to have major influences on the future evolution of the Swiss energy system. To understand the implications of selected future policy decisions, we analyse the development of the Swiss energy system with a bottom-up technology-rich least-cost optimisation modelling framework. We use the Swiss MARKAL energy system model and analyse a stringent climate change mitigation policy with two policy variants on the availability of nuclear energy, i.e. with and without nuclear new builds. The energy system modelling approach provides insights into system-wide energy pathways, technology choice and cross-sectoral trade-offs like resource competition, electrification, and CO2 mitigation options across supply and demand sectors. To complement the full system approach, we apply an experimental TIMES model – a successor to MARKAL – of the Swiss electricity sector with a detailed representation of the electricity load curve accounting for diurnal and seasonal variations in demand and resource supply. The analytical results from both modelling approaches are presented and the electricity sector results compared to illustrate the complementary policy insights. The implications for realising an ambitious climate target with and without investment in new nuclear plants are discussed, and a number of areas for possible policy support identified.

Suggested Citation

  • Nicolas Weidmann & Ramachandran Kannan & Hal Turton, 2012. "Swiss Climate Change and Nuclear Policy: A Comparative Analysis Using an Energy System Approach and a Sectoral Electricity Model," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 275-316, June.
  • Handle: RePEc:ses:arsjes:2012-ii-7
    as

    Download full text from publisher

    File URL: http://www.sjes.ch/papers/2012-II-7.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schulz, Thorsten F. & Barreto, Leonardo & Kypreos, Socrates & Stucki, Samuel, 2007. "Assessing wood-based synthetic natural gas technologies using the SWISS-MARKAL model," Energy, Elsevier, vol. 32(10), pages 1948-1959.
    2. Kannan, Ramachandran, 2011. "The development and application of a temporal MARKAL energy system model using flexible time slicing," Applied Energy, Elsevier, vol. 88(6), pages 2261-2272, June.
    3. Schulz, Thorsten F. & Kypreos, Socrates & Barreto, Leonardo & Wokaun, Alexander, 2008. "Intermediate steps towards the 2000Â W society in Switzerland: An energy-economic scenario analysis," Energy Policy, Elsevier, vol. 36(4), pages 1303-1317, April.
    4. André Sceia & Juan-Carlos Altamirano-Cabrera & Marc Vielle & Nicolas Weidmann, 2012. "Assessment of Acceptable Swiss post-2012 Climate Policies," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 347-380, June.
    5. Kannan, R., 2009. "Uncertainties in key low carbon power generation technologies - Implication for UK decarbonisation targets," Applied Energy, Elsevier, vol. 86(10), pages 1873-1886, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicole A. Mathys & Philippe Thalmann & Marc Vielle, 2012. "Modelling Contributions to the Swiss Energy and Environmental Challenge," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 97-109, June.
    2. Kannan, Ramachandran & Turton, Hal, 2012. "Cost of ad-hoc nuclear policy uncertainties in the evolution of the Swiss electricity system," Energy Policy, Elsevier, vol. 50(C), pages 391-406.
    3. Frédéric Babonneau & Alain Haurie & Guillaume Jean Tarel & Julien Thénié, 2012. "Assessing the Future of Renewable and Smart Grid Technologies in Regional Energy Systems," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 229-273, June.
    4. Bartlett, Stuart & Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Manso, Pedro & Lehning, Michael, 2018. "Charting the course: A possible route to a fully renewable Swiss power system," Energy, Elsevier, vol. 163(C), pages 942-955.
    5. Schlecht, Ingmar & Weigt, Hannes, 2014. "Swissmod - a model of the Swiss electricity market," Working papers 2014/04, Faculty of Business and Economics - University of Basel.
    6. Pattupara, Rajesh & Kannan, Ramachandran, 2016. "Alternative low-carbon electricity pathways in Switzerland and it’s neighbouring countries under a nuclear phase-out scenario," Applied Energy, Elsevier, vol. 172(C), pages 152-168.
    7. Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Sophie Maire & Philippe Thalmann & Frank Vöhringer, 2019. "Welfare effects of technology-based climate policies in liberalized electricity markets: seeing beyond total system cost," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-12, December.
    9. Adriana Marcucci Bustos & Hal Turton, 2012. "Swiss Energy Strategies under Global Climate Change and Nuclear Policy Uncertainty," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 317-345, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kannan, Ramachandran & Turton, Hal, 2012. "Cost of ad-hoc nuclear policy uncertainties in the evolution of the Swiss electricity system," Energy Policy, Elsevier, vol. 50(C), pages 391-406.
    2. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    3. Panos, Evangelos & Kannan, Ramachandran, 2016. "The role of domestic biomass in electricity, heat and grid balancing markets in Switzerland," Energy, Elsevier, vol. 112(C), pages 1120-1138.
    4. Andersen, Kristoffer Steen & Wiese, Catharina & Petrovic, Stefan & McKenna, Russell, 2020. "Exploring the role of households’ hurdle rates and demand elasticities in meeting Danish energy-savings target," Energy Policy, Elsevier, vol. 146(C).
    5. García-Gusano, Diego & Espegren, Kari & Lind, Arne & Kirkengen, Martin, 2016. "The role of the discount rates in energy systems optimisation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 56-72.
    6. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    7. Philippe Thalmann & Marc Vielle, 2019. "Lowering CO2 emissions in the Swiss transport sector," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-12, December.
    8. Trutnevyte, Evelina & Stauffacher, Michael & Scholz, Roland W., 2012. "Linking stakeholder visions with resource allocation scenarios and multi-criteria assessment," European Journal of Operational Research, Elsevier, vol. 219(3), pages 762-772.
    9. Chaudry, Modassar & Abeysekera, Muditha & Hosseini, Seyed Hamid Reza & Jenkins, Nick & Wu, Jianzhong, 2015. "Uncertainties in decarbonising heat in the UK," Energy Policy, Elsevier, vol. 87(C), pages 623-640.
    10. Ali, Ghaffar & Abbas, Sawaid & Mueen Qamer, Faisal, 2013. "How effectively low carbon society development models contribute to climate change mitigation and adaptation action plans in Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 632-638.
    11. Avinash Vijay & Adam Hawkes, 2017. "The Techno-Economics of Small-Scale Residential Heating in Low Carbon Futures," Energies, MDPI, vol. 10(11), pages 1-23, November.
    12. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    13. Procesi, M. & Cantucci, B. & Buttinelli, M. & Armezzani, G. & Quattrocchi, F. & Boschi, E., 2013. "Strategic use of the underground in an energy mix plan: Synergies among CO2, CH4 geological storage and geothermal energy. Latium Region case study (Central Italy)," Applied Energy, Elsevier, vol. 110(C), pages 104-131.
    14. Vijay, Avinash & Fouquet, Nicolas & Staffell, Iain & Hawkes, Adam, 2017. "The value of electricity and reserve services in low carbon electricity systems," Applied Energy, Elsevier, vol. 201(C), pages 111-123.
    15. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    16. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    17. Mechri, Houcem Eddine & Capozzoli, Alfonso & Corrado, Vincenzo, 2010. "USE of the ANOVA approach for sensitive building energy design," Applied Energy, Elsevier, vol. 87(10), pages 3073-3083, October.
    18. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "Carbon price volatility: Evidence from EU ETS," Applied Energy, Elsevier, vol. 88(3), pages 590-598, March.
    19. Åhman, Max, 2010. "Biomethane in the transport sector--An appraisal of the forgotten option," Energy Policy, Elsevier, vol. 38(1), pages 208-217, January.
    20. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2021. "Long-term uncertainties in generation expansion planning: Implications for electricity market modelling and policy," Energy, Elsevier, vol. 227(C).

    More about this item

    Keywords

    MARKAL energy system model; TIMES electricity model; Swiss climate policy; Scenario analysis;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ses:arsjes:2012-ii-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Steiner (email available below). General contact details of provider: https://edirc.repec.org/data/sgvssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.