IDEAS home Printed from https://ideas.repec.org/a/ses/arsjes/2012-ii-6.html
   My bibliography  Save this article

Assessing the Future of Renewable and Smart Grid Technologies in Regional Energy Systems

Author

Listed:
  • Frédéric Babonneau
  • Alain Haurie
  • Guillaume Jean Tarel
  • Julien Thénié

Abstract

In this paper we present the regional techno-economic model ETEM, designed for the analysis of regional energy/environment systems and we show how it can be used to explore the possible penetration of new technologies in a region corresponding roughly to the canton of Geneva. We investigate three scenarios with different constraints on CO2 emissions and electricity imports and show the essential role played by new technologies, linked through a smart grid, in the effort toward a sustainable energy system. We strengthen our conclusion with a stochastic approach dealing with uncertainty in future electricity prices and electric car technology penetration.

Suggested Citation

  • Frédéric Babonneau & Alain Haurie & Guillaume Jean Tarel & Julien Thénié, 2012. "Assessing the Future of Renewable and Smart Grid Technologies in Regional Energy Systems," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 229-273, June.
  • Handle: RePEc:ses:arsjes:2012-ii-6
    as

    Download full text from publisher

    File URL: http://www.sjes.ch/papers/2012-II-6.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian van Delft, 2007. "Automatic Formulation of Stochastic Programs Via an Algebraic Modeling Language," Post-Print halshs-00120971, HAL.
    2. Brown, James E. & Hendry, Chris N. & Harborne, Paul, 2007. "An emerging market in fuel cells? Residential combined heat and power in four countries," Energy Policy, Elsevier, vol. 35(4), pages 2173-2186, April.
    3. Neef, H.-J., 2009. "International overview of hydrogen and fuel cell research," Energy, Elsevier, vol. 34(3), pages 327-333.
    4. Nicolas Weidmann & Ramachandran Kannan & Hal Turton, 2012. "Swiss Climate Change and Nuclear Policy: A Comparative Analysis Using an Energy System Approach and a Sectoral Electricity Model," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 275-316, June.
    5. Christian van Delft & Jean-Philippe Vial & J. Thénié, 2007. "Automatic Formulation of Stochastic Programs Via an Algebraic Modeling Language," Post-Print hal-00471422, HAL.
    6. J. Thénié & Ch. Delft & J. Vial, 2007. "Automatic Formulation of Stochastic Programs Via an Algebraic Modeling Language," Computational Management Science, Springer, vol. 4(1), pages 17-40, January.
    7. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    8. Christian van Delft & J. Thénié & J. P. Vial, 2007. "Automatic Formulation of Stochastic Programs Via an Algebraic Modeling Language," Post-Print halshs-00126783, HAL.
    9. Wene, Clas-Otto & Ryden, Bo, 1988. "A comprehensive energy model in the municipal energy planning process," European Journal of Operational Research, Elsevier, vol. 33(2), pages 212-222, January.
    10. Hawkes, A.D. & Leach, M.A., 2007. "Cost-effective operating strategy for residential micro-combined heat and power," Energy, Elsevier, vol. 32(5), pages 711-723.
    11. Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    2. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
    3. Sajad Aliakbari Sani & Azadeh Maroufmashat & Frédéric Babonneau & Olivier Bahn & Erick Delage & Alain Haurie & Normand Mousseau & Kathleen Vaillancourt, 2022. "Energy Transition Pathways for Deep Decarbonization of the Greater Montreal Region: An Energy Optimization Framework," Energies, MDPI, vol. 15(10), pages 1-18, May.
    4. Pattupara, Rajesh & Kannan, Ramachandran, 2016. "Alternative low-carbon electricity pathways in Switzerland and it’s neighbouring countries under a nuclear phase-out scenario," Applied Energy, Elsevier, vol. 172(C), pages 152-168.
    5. Frédéric Babonneau & Alain Haurie, 2019. "Energy technology environment model with smart grid and robust nodal electricity prices," Annals of Operations Research, Springer, vol. 274(1), pages 101-117, March.
    6. Aliakbari Sani, Sajad & Bahn, Olivier & Delage, Erick, 2022. "Affine decision rule approximation to address demand response uncertainty in smart Grids’ capacity planning," European Journal of Operational Research, Elsevier, vol. 303(1), pages 438-455.
    7. Timmerman, Jonas & Vandevelde, Lieven & Van Eetvelde, Greet, 2014. "Towards low carbon business park energy systems: Classification of techno-economic energy models," Energy, Elsevier, vol. 75(C), pages 68-80.
    8. Babonneau, Frédéric & Caramanis, Michael & Haurie, Alain, 2016. "A linear programming model for power distribution with demand response and variable renewable energy," Applied Energy, Elsevier, vol. 181(C), pages 83-95.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. BRECHET, Thierry & THENIE, Julien & ZEIMES, Thibaut & ZUBER, Stéphane, 2010. "The benefits of cooperation under uncertainty: the case of climate change," LIDAM Discussion Papers CORE 2010062, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Eduardo Faria & Stein-Erik Fleten, 2011. "Day-ahead market bidding for a Nordic hydropower producer: taking the Elbas market into account," Computational Management Science, Springer, vol. 8(1), pages 75-101, April.
    3. Mongibello, Luigi & Bianco, Nicola & Caliano, Martina & Graditi, Giorgio, 2016. "Comparison between two different operation strategies for a heat-driven residential natural gas-fired CHP system: Heat dumping vs. load partialization," Applied Energy, Elsevier, vol. 184(C), pages 55-67.
    4. Petrescu, Stoian & Petre, Camelia & Costea, Monica & Malancioiu, Octavian & Boriaru, Nicolae & Dobrovicescu, Alexandru & Feidt, Michel & Harman, Charles, 2010. "A methodology of computation, design and optimization of solar Stirling power plant using hydrogen/oxygen fuel cells," Energy, Elsevier, vol. 35(2), pages 729-739.
    5. Cappa, Francesco & Facci, Andrea Luigi & Ubertini, Stefano, 2015. "Proton exchange membrane fuel cell for cooperating households: A convenient combined heat and power solution for residential applications," Energy, Elsevier, vol. 90(P2), pages 1229-1238.
    6. Babonneau, Frédéric & Caramanis, Michael & Haurie, Alain, 2016. "A linear programming model for power distribution with demand response and variable renewable energy," Applied Energy, Elsevier, vol. 181(C), pages 83-95.
    7. Chenghong Gu & Da Xie & Junbo Sun & Xitian Wang & Qian Ai, 2015. "Optimal Operation of Combined Heat and Power System Based on Forecasted Energy Prices in Real-Time Markets," Energies, MDPI, vol. 8(12), pages 1-16, December.
    8. Howard, B. & Modi, V., 2017. "Examination of the optimal operation of building scale combined heat and power systems under disparate climate and GHG emissions rates," Applied Energy, Elsevier, vol. 185(P1), pages 280-293.
    9. Martínez-Lera, S. & Ballester, J. & Martínez-Lera, J., 2013. "Analysis and sizing of thermal energy storage in combined heating, cooling and power plants for buildings," Applied Energy, Elsevier, vol. 106(C), pages 127-142.
    10. Morstyn, Thomas & Collett, Katherine A. & Vijay, Avinash & Deakin, Matthew & Wheeler, Scot & Bhagavathy, Sivapriya M. & Fele, Filiberto & McCulloch, Malcolm D., 2020. "OPEN: An open-source platform for developing smart local energy system applications," Applied Energy, Elsevier, vol. 275(C).
    11. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    12. Zhao, Xiaoli & Chen, Haoran & Liu, Suwei & Ye, Xiaomei, 2020. "Economic & environmental effects of priority dispatch of renewable energy considering fluctuating power output of coal-fired units," Renewable Energy, Elsevier, vol. 157(C), pages 695-707.
    13. Fan, Mei-Qiang & Liu, Shu-sheng & Zhang, Yao & Zhang, Jian & Sun, Li-Xian & Xu, Fen, 2010. "Superior hydrogen storage properties of MgH2–10 wt.% TiC composite," Energy, Elsevier, vol. 35(8), pages 3417-3421.
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    16. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    17. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    18. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    19. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    20. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.

    More about this item

    Keywords

    smart-grids; renewable energy sources; Switzerland; Geneva;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ses:arsjes:2012-ii-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kurt Schmidheiny (email available below). General contact details of provider: https://edirc.repec.org/data/sgvssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.