IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v83y2015icp229-239.html
   My bibliography  Save this article

Energy efficiency determinants: An empirical analysis of Spanish innovative firms

Author

Listed:
  • Costa-Campi, María Teresa
  • García-Quevedo, José
  • Segarra, Agustí

Abstract

This paper examines the extent to which innovative Spanish firms pursue improvements in energy efficiency (EE) as an objective of innovation. The increase in energy consumption and its impact on greenhouse gas emissions justifies the greater attention being paid to energy efficiency and especially to industrial EE. The ability of manufacturing companies to innovate and improve their EE has a substantial influence on attaining objectives regarding climate change mitigation. Despite the effort to design more efficient energy policies, the EE determinants in manufacturing firms have been little studied in the empirical literature. From an exhaustive sample of Spanish manufacturing firms and using a logit model, we examine the energy efficiency determinants for those firms that have innovated. To carry out the econometric analysis, we use panel data from the Community Innovation Survey for the period 2008–2011. Our empirical results underline the role of size among the characteristics of firms that facilitate energy efficiency innovation. Regarding company behaviour, firms that consider the reduction of environmental impacts to be an important objective of innovation and that have introduced organisational innovations are more likely to innovate with the objective of increasing energy efficiency.

Suggested Citation

  • Costa-Campi, María Teresa & García-Quevedo, José & Segarra, Agustí, 2015. "Energy efficiency determinants: An empirical analysis of Spanish innovative firms," Energy Policy, Elsevier, vol. 83(C), pages 229-239.
  • Handle: RePEc:eee:enepol:v:83:y:2015:i:c:p:229-239
    DOI: 10.1016/j.enpol.2015.01.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515000567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.01.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kenneth Gillingham & Karen Palmer, 2014. "Bridging the Energy Efficiency Gap: Policy Insights from Economic Theory and Empirical Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(1), pages 18-38, January.
    2. Brown, Marilyn A., 2001. "Market failures and barriers as a basis for clean energy policies," Energy Policy, Elsevier, vol. 29(14), pages 1197-1207, November.
    3. Pedro Linares & Xavier Labandeira, 2010. "Energy Efficiency: Economics And Policy," Journal of Economic Surveys, Wiley Blackwell, vol. 24(3), pages 573-592, July.
    4. Anderson, Soren T. & Newell, Richard G., 2004. "Information programs for technology adoption: the case of energy-efficiency audits," Resource and Energy Economics, Elsevier, vol. 26(1), pages 27-50, March.
    5. Stephen J. Decanio & William E. Watkins, 1998. "Investment In Energy Efficiency: Do The Characteristics Of Firms Matter?," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 95-107, February.
    6. Kenneth Gillingham & Richard G. Newell & Karen Palmer, 2009. "Energy Efficiency Economics and Policy," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 597-620, September.
    7. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    8. Jacques Mairesse & Pierre Mohnen, 2005. "The Importance of R&D for Innovation: A Reassessment Using French Survey Data," The Journal of Technology Transfer, Springer, vol. 30(2_2), pages 183-197, January.
    9. de Groot, Henri L. F. & Verhoef, Erik T. & Nijkamp, Peter, 2001. "Energy saving by firms: decision-making, barriers and policies," Energy Economics, Elsevier, vol. 23(6), pages 717-740, November.
    10. Horbach, Jens & Rammer, Christian & Rennings, Klaus, 2012. "Determinants of eco-innovations by type of environmental impact — The role of regulatory push/pull, technology push and market pull," Ecological Economics, Elsevier, vol. 78(C), pages 112-122.
    11. Sutherland, Ronald J, 1996. "The economics of energy conservation policy," Energy Policy, Elsevier, vol. 24(4), pages 361-370, April.
    12. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    13. B. Sudhakara Reddy & Gaudenz Assenza, 2007. "Barriers and Drivers to Energy Efficiency - A new Taxonomical Approach," Development Economics Working Papers 22348, East Asian Bureau of Economic Research.
    14. Kenneth Arrow, 1962. "Economic Welfare and the Allocation of Resources for Invention," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 609-626, National Bureau of Economic Research, Inc.
    15. Gustavo A. Marrero & Francisco J. Ramos-Real, 2008. "La intensidad energética en los sectores productivos en la UE-15 durante 1991 y 2005: ¿Es el caso español diferente?," Economic Reports 08-08, FEDEA.
    16. Ronald J. Sutherland, 1991. "Market Barriers to Energy-Efficiency Investments," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 15-34.
    17. Demirel, Pelin & Kesidou, Effie, 2011. "Stimulating different types of eco-innovation in the UK: Government policies and firm motivations," Ecological Economics, Elsevier, vol. 70(8), pages 1546-1557, June.
    18. Paul Lanoie & Jérémy Laurent‐Lucchetti & Nick Johnstone & Stefan Ambec, 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 20(3), pages 803-842, September.
    19. Jason F. Shogren & Laura O. Taylor, 2008. "On Behavioral-Environmental Economics," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(1), pages 26-44, Winter.
    20. Urpelainen, Johannes, 2011. "Export orientation and domestic electricity generation: Effects on energy efficiency innovation in select sectors," Energy Policy, Elsevier, vol. 39(9), pages 5638-5646, September.
    21. Greening, Lorna A. & Davis, William B. & Schipper, Lee & Khrushch, Marta, 1997. "Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries," Energy Economics, Elsevier, vol. 19(3), pages 375-390, July.
    22. Gillingham, Kenneth & Palmer, Karen, 2013. "Bridging the Energy Efficiency Gap: Insights for Policy from Economic Theory and Empirical Analysis," RFF Working Paper Series dp-13-02, Resources for the Future.
    23. Duro, Juan Antonio & Alcántara, Vicent & Padilla, Emilio, 2010. "International inequality in energy intensity levels and the role of production composition and energy efficiency: An analysis of OECD countries," Ecological Economics, Elsevier, vol. 69(12), pages 2468-2474, October.
    24. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    25. Jens Horbach & Vanessa Oltra & Jean Belin, 2013. "Determinants and Specificities of Eco-Innovations Compared to Other Innovations--An Econometric Analysis for the French and German Industry Based on the Community Innovation Survey-super-1," Industry and Innovation, Taylor & Francis Journals, vol. 20(6), pages 523-543, August.
    26. Chai, Kah-Hin & Yeo, Catrina, 2012. "Overcoming energy efficiency barriers through systems approach—A conceptual framework," Energy Policy, Elsevier, vol. 46(C), pages 460-472.
    27. Klaus Rennings & Christian Rammer, 2009. "Increasing Energy and Resource Efficiency through Innovation: An Explorative Analysis Using Innovation Survey Data," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(5), pages 442-459, December.
    28. Richard R. Nelson, 1959. "The Simple Economics of Basic Scientific Research," Journal of Political Economy, University of Chicago Press, vol. 67, pages 297-297.
    29. Jean Tirole, 1988. "The Theory of Industrial Organization," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262200716, December.
    30. Madhu Khanna & George Deltas & Donna Harrington, 2009. "Adoption of Pollution Prevention Techniques: The Role of Management Systems and Regulatory Pressures," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(1), pages 85-106, September.
    31. Rohdin, P. & Thollander, P., 2006. "Barriers to and driving forces for energy efficiency in the non-energy intensive manufacturing industry in Sweden," Energy, Elsevier, vol. 31(12), pages 1836-1844.
    32. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    33. De Marchi, Valentina, 2012. "Environmental innovation and R&D cooperation: Empirical evidence from Spanish manufacturing firms," Research Policy, Elsevier, vol. 41(3), pages 614-623.
    34. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    35. Reddy, Amulya K. N., 1991. "Barriers to improvements in energy efficiency," Energy Policy, Elsevier, vol. 19(10), pages 953-961, December.
    36. Palm, Jenny & Thollander, Patrik, 2010. "An interdisciplinary perspective on industrial energy efficiency," Applied Energy, Elsevier, vol. 87(10), pages 3255-3261, October.
    37. Gerrit de Wit & Lorraine Uhlaner & Marta Berent-Braun & Ronald Jeurissen, 2011. "Beyond Size: Predicting engagement in environmental management practices of Dutch SMEs," Scales Research Reports H201118, EIM Business and Policy Research.
    38. Veugelers, Reinhilde, 2012. "Which policy instruments to induce clean innovating?," Research Policy, Elsevier, vol. 41(10), pages 1770-1778.
    39. Mendiluce, María & Pérez-Arriaga, Ignacio & Ocaña, Carlos, 2010. "Comparison of the evolution of energy intensity in Spain and in the EU15. Why is Spain different?," Energy Policy, Elsevier, vol. 38(1), pages 639-645, January.
    40. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    41. Aija Leiponen & Constance E. Helfat, 2010. "Innovation objectives, knowledge sources, and the benefits of breadth," Strategic Management Journal, Wiley Blackwell, vol. 31(2), pages 224-236, February.
    42. Fleiter, Tobias & Schleich, Joachim & Ravivanpong, Ployplearn, 2012. "Adoption of energy-efficiency measures in SMEs—An empirical analysis based on energy audit data from Germany," Energy Policy, Elsevier, vol. 51(C), pages 863-875.
    43. Blumstein, Carl & Krieg, Betsy & Schipper, Lee & York, Carl, 1980. "Overcoming social and institutional barriers to energy conservation," Energy, Elsevier, vol. 5(4), pages 355-371.
    44. Trianni, A. & Cagno, E., 2012. "Dealing with barriers to energy efficiency and SMEs: Some empirical evidences," Energy, Elsevier, vol. 37(1), pages 494-504.
    45. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    46. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    47. Luiten, Esther E. M. & Blok, Kornelis, 2003. "Stimulating R&D of industrial energy-efficient technology; the effect of government intervention on the development of strip casting technology," Energy Policy, Elsevier, vol. 31(13), pages 1339-1356, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costa-Campi, María Teresa & García-Quevedo, José & Segarra, Agustí, 2015. "Energy efficiency determinants: An empirical analysis of Spanish innovative firms," Energy Policy, Elsevier, vol. 83(C), pages 229-239.
    2. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    3. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    4. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    5. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    6. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    7. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    8. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    9. Jafarzadeh, Sepideh & Utne, Ingrid Bouwer, 2014. "A framework to bridge the energy efficiency gap in shipping," Energy, Elsevier, vol. 69(C), pages 603-612.
    10. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    11. Kalantzis, Fotios & Revoltella, Debora, 2019. "How energy audits promote SMEs' energy efficiency investment," EIB Working Papers 2019/02, European Investment Bank (EIB).
    12. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    13. Bilous Liliia, 2020. "Determination of energy efficiency barriers taxonomy in socio-economic model of Ukraine," Technology audit and production reserves, Socionet;Technology audit and production reserves, vol. 3(4(53)), pages 14-21.
    14. Olsthoorn, Mark & Schleich, Joachim & Klobasa, Marian, 2015. "Barriers to electricity load shift in companies: A survey-based exploration of the end-user perspective," Energy Policy, Elsevier, vol. 76(C), pages 32-42.
    15. Costa, M. Teresa (Maria Teresa), 1951- & García, José, 1963- & Segarra Blasco, Agustí, 1958-, 2015. "Energy efficiency determinants: An empirical analysis of Spanish innovative firms," Working Papers 2072/248362, Universitat Rovira i Virgili, Department of Economics.
    16. Ángeles Longarela-Ares & Anxo Calvo-Silvosa & José-Benito Pérez-López, 2020. "The Influence of Economic Barriers and Drivers on Energy Efficiency Investments in Maritime Shipping, from the Perspective of the Principal-Agent Problem," Sustainability, MDPI, vol. 12(19), pages 1-42, September.
    17. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    18. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Zhu, Junming & Chertow, Marian R., 2017. "Business Strategy Under Institutional Constraints: Evidence From China's Energy Efficiency Regulations," Ecological Economics, Elsevier, vol. 135(C), pages 10-21.
    20. Fleiter, Tobias & Schleich, Joachim & Ravivanpong, Ployplearn, 2012. "Adoption of energy-efficiency measures in SMEs—An empirical analysis based on energy audit data from Germany," Energy Policy, Elsevier, vol. 51(C), pages 863-875.

    More about this item

    Keywords

    Energy efficiency; Corporate targets; Innovation; Community Innovation Survey;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:83:y:2015:i:c:p:229-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.