IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v49y2012icp253-265.html
   My bibliography  Save this article

External cost of coal based electricity generation: A tale of Ahmedabad city

Author

Listed:
  • Mahapatra, Diptiranjan
  • Shukla, Priyadarshi
  • Dhar, Subash

Abstract

Electricity production causes unintended impacts. Their exclusion by the market leads to suboptimal resource allocations. Monetizing and internalizing of external costs, though challenging and debatable, leads to a better allocation of economic resources and welfare. In this paper, a life-cycle analysis (LCA) on the production of electricity from conventional coal based electricity generation system has been performed in order to examine the environmental impacts of coal based electricity generating systems in the twin-city of Ahmedabad and Gandhinagar in western India. By using dose–response functions, we make an attempt to estimate the damages to human health, crops, and building materials resulting from the operation of coal power plants and its associated mines. Further, we use geographic information system to account for spatially dependent data. Finally, monetary values have been assigned to estimate the damage to human health, crops and building materials. This study reveals that the health as well as on non-health impacts of air pollution resulting from coal based electricity generation may not be ignored both in absolute as well as economic value terms.

Suggested Citation

  • Mahapatra, Diptiranjan & Shukla, Priyadarshi & Dhar, Subash, 2012. "External cost of coal based electricity generation: A tale of Ahmedabad city," Energy Policy, Elsevier, vol. 49(C), pages 253-265.
  • Handle: RePEc:eee:enepol:v:49:y:2012:i:c:p:253-265
    DOI: 10.1016/j.enpol.2012.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512005216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tol, Richard S. J., 2005. "The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties," Energy Policy, Elsevier, vol. 33(16), pages 2064-2074, November.
    2. Longo, Alberto & Markandya, Anil & Petrucci, Marta, 2008. "The internalization of externalities in the production of electricity: Willingness to pay for the attributes of a policy for renewable energy," Ecological Economics, Elsevier, vol. 67(1), pages 140-152, August.
    3. David Maddison & Rosa Catala-Luque & David Pearce, 2005. "Valuing the Arsenic Contamination of Groundwater in Bangladesh," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 31(4), pages 459-476, August.
    4. Krewitt, Wolfram, 2002. "External costs of energy--do the answers match the questions?: Looking back at 10 years of ExternE," Energy Policy, Elsevier, vol. 30(10), pages 839-848, August.
    5. Shanmugam, K R, 2001. "Self Selection Bias in the Estimates of Compensating Differentials for Job Risks in India," Journal of Risk and Uncertainty, Springer, vol. 22(3), pages 263-275, May.
    6. Ostro, Bart, 1994. "Estimating the health effects of air pollutants : a method with an application to Jakarta," Policy Research Working Paper Series 1301, The World Bank.
    7. Schleisner, Lotte, 2000. "Comparison of methodologies for externality assessment," Energy Policy, Elsevier, vol. 28(15), pages 1127-1136, December.
    8. R. H. Coase, 2013. "The Problem of Social Cost," Journal of Law and Economics, University of Chicago Press, vol. 56(4), pages 837-877.
    9. Darwin C. Hall, 1990. "Preliminary Estimates Of Cumulative Private And External Costs Of Energy," Contemporary Economic Policy, Western Economic Association International, vol. 8(3), pages 283-307, July.
    10. K. Shanmugam, 2000. "Valuations of Life and Injury Risks," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 16(4), pages 379-389, August.
    11. Stirling, Andrew, 1997. "Limits to the value of external costs," Energy Policy, Elsevier, vol. 25(5), pages 517-540, April.
    12. Shah, J.J. & Nagpal, T., 1997. "Urban Air Quality Management Strategy in Asia. Greater Mumbai Report," Papers 381, World Bank - Technical Papers.
    13. Anthony D. Owen, 2004. "Environmental Externalities, Market Distortions and the Economics of Renewable Energy Technologies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 127-158.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Molyneaux, Lynette & Wagner, Liam & Foster, John, 2016. "Rural electrification in India: Galilee Basin coal versus decentralised renewable energy micro grids," Renewable Energy, Elsevier, vol. 89(C), pages 422-436.
    2. Hao-Dong Lv & Jin-Sheng Zhou & Lin Yang & Yi-Ming Li & Lu Liu, 2020. "An accounting of the external environmental costs of coal in Inner Mongolia using the pollution damage method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1299-1321, February.
    3. Xiaonan Wang & Licheng Wang & Jianping Chen & Shouting Zhang & Paolo Tarolli, 2020. "Assessment of the External Costs of Life Cycle of Coal: The Case Study of Southwestern China," Energies, MDPI, vol. 13(15), pages 1-26, August.
    4. Herrera, I. & De Ruyck, J. & Ocaña, V.S. & Rubio, M. & Martínez, R.M. & Núñez, V., 2013. "Environmental impact of decentralized power generation in Santa Clara City, Cuba: An integrated assessment based on technological and human health risk indicators," Applied Energy, Elsevier, vol. 109(C), pages 24-35.
    5. Selim Karkour & Yuki Ichisugi & Amila Abeynayaka & Norihiro Itsubo, 2020. "External-Cost Estimation of Electricity Generation in G20 Countries: Case Study Using a Global Life-Cycle Impact-Assessment Method," Sustainability, MDPI, vol. 12(5), pages 1-35, March.
    6. Jintao Lu & Chong Zhang & Licheng Ren & Mengshang Liang & Wadim Strielkowski & Justas Streimikis, 2020. "Evolution of External Health Costs of Electricity Generation in the Baltic States," IJERPH, MDPI, vol. 17(15), pages 1-22, July.
    7. Yuan, Jiahai & Xu, Yan & Kang, Junjie & Zhang, Xingping & Hu, Zheng, 2014. "Nonlinear integrated resource strategic planning model and case study in China's power sector planning," Energy, Elsevier, vol. 67(C), pages 27-40.
    8. Lingling Wang & Tsunemi Watanabe & Zhiwei Xu, 2015. "Monetization of External Costs Using Lifecycle Analysis—A Comparative Case Study of Coal-Fired and Biomass Power Plants in Northeast China," Energies, MDPI, vol. 8(2), pages 1-28, February.
    9. Guohao Zhao & Yushan Zhao & Hehua Liu & Tao Lin, 2014. "Systems Optimization for the Technology Route to the Comprehensive Utilization of Coal Resources in China," Energy & Environment, , vol. 25(1), pages 1-11, February.
    10. Vojtěch Máca & Jan Melichar, 2016. "The Health Costs of Revised Coal Mining Limits in Northern Bohemia," Energies, MDPI, vol. 9(2), pages 1-20, January.
    11. Zhao, Xiaoli & Cai, Qiong & Ma, Chunbo & Hu, Yanan & Luo, Kaiyan & Li, William, 2017. "Economic evaluation of environmental externalities in China’s coal-fired power generation," Energy Policy, Elsevier, vol. 102(C), pages 307-317.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingling Wang & Tsunemi Watanabe & Zhiwei Xu, 2015. "Monetization of External Costs Using Lifecycle Analysis—A Comparative Case Study of Coal-Fired and Biomass Power Plants in Northeast China," Energies, MDPI, vol. 8(2), pages 1-28, February.
    2. Jochem, Patrick & Doll, Claus & Fichtner, Wolf, 2016. "External costs of electric vehicles," MPRA Paper 91602, University Library of Munich, Germany.
    3. Soderholm, Patrik & Sundqvist, Thomas, 2003. "Pricing environmental externalities in the power sector: ethical limits and implications for social choice," Ecological Economics, Elsevier, vol. 46(3), pages 333-350, October.
    4. Frame, Bob & Cavanagh, Jo, 2009. "Experiences of sustainability assessment: An awkward adolescence," Accounting forum, Elsevier, vol. 33(3), pages 195-208.
    5. Liu, Qian & Zheng, Lucy, 2016. "Assessing the economic performance of an environmental sustainable supply chain in reducing environmental externalitiesAuthor-Name: Ding, Huiping," European Journal of Operational Research, Elsevier, vol. 255(2), pages 463-480.
    6. Kim, Sang-Hoon, 2007. "Evaluation of negative environmental impacts of electricity generation: Neoclassical and institutional approaches," Energy Policy, Elsevier, vol. 35(1), pages 413-423, January.
    7. Gulli, Francesco, 2006. "Social choice, uncertainty about external costs and trade-off between intergenerational environmental impacts: The emblematic case of gas-based energy supply decentralization," Ecological Economics, Elsevier, vol. 57(2), pages 282-305, May.
    8. Sundqvist, Thomas, 2004. "What causes the disparity of electricity externality estimates?," Energy Policy, Elsevier, vol. 32(15), pages 1753-1766, October.
    9. Muhammad Rafiq & Mir Kalan Shah, 2010. "The Value of Reduced Risk of Injury and Deaths in Pakistan—Using Actual and Perceived Risk Estimates," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 49(4), pages 823-837.
    10. Verbruggen, Aviel, 2009. "Performance evaluation of renewable energy support policies, applied on Flanders' tradable certificates system," Energy Policy, Elsevier, vol. 37(4), pages 1385-1394, April.
    11. Pérez-Martínez, P.J. & Vassallo-Magro, J.M., 2013. "Changes in the external costs of freight surface transport In Spain," Research in Transportation Economics, Elsevier, vol. 42(1), pages 61-76.
    12. Tol, Richard S.J., 2006. "The Polluter Pays Principle and Cost-Benefit Analysis of Climate Change: An Application of Fund," Climate Change Modelling and Policy Working Papers 12058, Fondazione Eni Enrico Mattei (FEEM).
    13. Gibson, John & Barns, Sandra & Cameron, Michael & Lim, Steven & Scrimgeour, Frank & Tressler, John, 2007. "The Value of Statistical Life and the Economics of Landmine Clearance in Developing Countries," World Development, Elsevier, vol. 35(3), pages 512-531, March.
    14. Espinosa, María Paz & Pizarro-Irizar, Cristina, 2018. "Is renewable energy a cost-effective mitigation resource? An application to the Spanish electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 902-914.
    15. McHenry, Mark, 2009. "Policy options when giving negative externalities market value: Clean energy policymaking and restructuring the Western Australian energy sector," Energy Policy, Elsevier, vol. 37(4), pages 1423-1431, April.
    16. Alberini, Anna & Ščasný, Milan & Bigano, Andrea, 2018. "Policy- v. individual heterogeneity in the benefits of climate change mitigation: Evidence from a stated-preference survey," Energy Policy, Elsevier, vol. 121(C), pages 565-575.
    17. Messer, Kent D., 2010. "Protecting endangered species: When are shoot-on-sight policies the only viable option to stop poaching?," Ecological Economics, Elsevier, vol. 69(12), pages 2334-2340, October.
    18. Gulli, Francesco, 2006. "Small distributed generation versus centralised supply: a social cost-benefit analysis in the residential and service sectors," Energy Policy, Elsevier, vol. 34(7), pages 804-832, May.
    19. Marta Daroń & Marlena Wilk, 2021. "Management of Energy Sources and the Development Potential in the Energy Production Sector—A Comparison of EU Countries," Energies, MDPI, vol. 14(3), pages 1-12, January.
    20. Chernyavs'ka, Liliya & Gullì, Francesco, 2010. "Measuring the environmental benefits of hydrogen transportation fuel cycles under uncertainty about external costs," Energy Policy, Elsevier, vol. 38(10), pages 5335-5345, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:49:y:2012:i:c:p:253-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.