IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i3p1617-1629.html
   My bibliography  Save this article

Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model

Author

Listed:
  • Axsen, Jonn
  • Kurani, Kenneth S.
  • McCarthy, Ryan
  • Yang, Christopher

Abstract

This paper explores how Plug-in Hybrid Vehicles (PHEVs) may reduce source-to-wheel Greenhouse Gas (GHG) emissions from passenger vehicles. The two primary advances are the incorporation of (1) explicit measures of consumer interest in and potential use of different types of PHEVs and (2) a model of the California electricity grid capable of differentiating hourly and seasonal GHG emissions by generation source. We construct PHEV emissions scenarios to address inherent relationships between vehicle design, driving and recharging behaviors, seasonal and time-of-day variation in GHG-intensity of electricity, and total GHG emissions. A sample of 877 California new vehicle buyers provide data on driving, time of day recharge access, and PHEV design interests. The elicited data differ substantially from the assumptions used in previous analyses. We construct electricity demand profiles scaled to one million PHEVs and input them into an hourly California electricity supply model to simulate GHG emissions. Compared to conventional vehicles, consumer-designed PHEVs cut marginal (incremental) GHG emissions by more than one-third in current California energy scenarios and by one-quarter in future energy scenarios--reductions similar to those simulated for all-electric PHEV designs. Across the emissions scenarios, long-term GHG reductions depends on reducing the carbon intensity of the grid.

Suggested Citation

  • Axsen, Jonn & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2011. "Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model," Energy Policy, Elsevier, vol. 39(3), pages 1617-1629, March.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1617-1629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00938-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. repec:cdl:itsdav:qt8ng2h3x7 is not listed on IDEAS
    2. repec:cdl:itsdav:qt8xv635dc is not listed on IDEAS
    3. Axsen, Jonn & Kurani, Kenneth S. & Burke, Andrew, 2010. "Are batteries ready for plug-in hybrid buyers?," Transport Policy, Elsevier, vol. 17(3), pages 173-182, May.
    4. repec:cdl:itsdav:qt5hv693r2 is not listed on IDEAS
    5. repec:cdl:itsdav:qt7vh184rw is not listed on IDEAS
    6. repec:cdl:itsrrp:qt1hm6k089 is not listed on IDEAS
    7. repec:cdl:itsdav:qt3h69n0cs is not listed on IDEAS
    8. repec:cdl:itsdav:qt5nn517r4 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    2. Juul, Nina, 2012. "Battery prices and capacity sensitivity: Electric drive vehicles," Energy, Elsevier, vol. 47(1), pages 403-410.
    3. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    4. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    5. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    6. Yang, Shengjie & Yao, Jiangang & Kang, Tong & Zhu, Xiangqian, 2014. "Dynamic operation model of the battery swapping station for EV (electric vehicle) in electricity market," Energy, Elsevier, vol. 65(C), pages 544-549.
    7. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    8. Geerten Van de Kaa & Daniel Scholten & Jafar Rezaei & Christine Milchram, 2017. "The Battle between Battery and Fuel Cell Powered Electric Vehicles: A BWM Approach," Energies, MDPI, vol. 10(11), pages 1-13, October.
    9. Bruce Tonn & Paul Frymier & Jared Graves & Jessa Meyers, 2010. "A Sustainable Energy Scenario for the United States: Year 2050," Sustainability, MDPI, vol. 2(12), pages 1-31, November.
    10. Dixon, James & Andersen, Peter Bach & Bell, Keith & Træholt, Chresten, 2020. "On the ease of being green: An investigation of the inconvenience of electric vehicle charging," Applied Energy, Elsevier, vol. 258(C).
    11. Catenacci, Michela & Verdolini, Elena & Bosetti, Valentina & Fiorese, Giulia, 2013. "Going electric: Expert survey on the future of battery technologies for electric vehicles," Energy Policy, Elsevier, vol. 61(C), pages 403-413.
    12. Matthew J. Beck & John M. Rose & Stephen P. Greaves, 2017. "I can’t believe your attitude: a joint estimation of best worst attitudes and electric vehicle choice," Transportation, Springer, vol. 44(4), pages 753-772, July.
    13. Kumar Shalender & Naman Sharma, 2021. "Using extended theory of planned behaviour (TPB) to predict adoption intention of electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 665-681, January.
    14. Mandys, F., 2021. "Electric vehicles and consumer choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    15. repec:cdl:itsdav:qt0x499211 is not listed on IDEAS
    16. repec:cdl:itsdav:qt8p32d18k is not listed on IDEAS
    17. Teng, Fei & Zhang, Qi & Chen, Siyuan & Wang, Ge & Huang, Zhenyue & Wang, Lu, 2024. "Comprehensive effects of policy mixes on the diffusion of heavy-duty hydrogen fuel cell electric trucks in China considering technology learning," Energy Policy, Elsevier, vol. 185(C).
    18. M. Sabri, M.F. & Danapalasingam, K.A. & Rahmat, M.F., 2016. "A review on hybrid electric vehicles architecture and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1433-1442.
    19. Fontaínhas, José & Cunha, Jorge & Ferreira, Paula, 2016. "Is investing in an electric car worthwhile from a consumers' perspective?," Energy, Elsevier, vol. 115(P2), pages 1459-1477.
    20. Richard Grimal, 2018. "Faut-Il Reduire L'Usage De La Voiture ? Couts Sociaux Et Benefices Environnementaux De Differents Scenarios Economiques Et Technologiques A L'Horizon 2060," Post-Print hal-02164869, HAL.
    21. Egnér, Filippa & Trosvik, Lina, 2018. "Electric vehicle adoption in Sweden and the impact of local policy instruments," Energy Policy, Elsevier, vol. 121(C), pages 584-596.
    22. repec:cdl:itsdav:qt9zg6g60t is not listed on IDEAS
    23. Michael Naor & Alex Coman & Anat Wiznizer, 2021. "Vertically Integrated Supply Chain of Batteries, Electric Vehicles, and Charging Infrastructure: A Review of Three Milestone Projects from Theory of Constraints Perspective," Sustainability, MDPI, vol. 13(7), pages 1-21, March.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1617-1629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.