IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v53y2016icp1433-1442.html
   My bibliography  Save this article

A review on hybrid electric vehicles architecture and energy management strategies

Author

Listed:
  • M. Sabri, M.F.
  • Danapalasingam, K.A.
  • Rahmat, M.F.

Abstract

Faced with environmental issues caused by fossil fuel burning in the industrial and transportation sectors, innovations towards cleaner solutions to replace the ever diminishing fossil fuels have been the focus of not only researchers but governments all around the world. The hybrid electric vehicle (HEV) technology is the result of the desire to have vehicles with a better fuel economy and lower tailpipe emissions to meet the requirements of environmental policies as well as to absorb the impact of rising fuel prices. The objectives are met by combining a conventional internal combustion engine (ICE) with one or more electric motors powered by a battery pack that can be charged using an on-board generator and the regenerative braking technology to power the transmission. The challenge is to develop an efficient energy management strategy (EMS) to satisfy the objectives while not having a reduced vehicle performance. In this paper, EMSs that are proposed and developed in the recent years are revisited and reviewed. Additionally, the Plug-in HEV is discussed in a new perspective from the EMS point of view. The through-the-road (TtR) HEV with in-wheel motors (IWM) is a fairly new concept in the HEV design that features less complicated configuration with reduced hardware requirements and lower cost. Recent research findings are evaluated throughout this paper leading to a hypothetical TtR HEV materialization. A thorough discussion is made encompassing the advantages and disadvantages of the concept, its performance compared to conventional HEVs and the way forward.

Suggested Citation

  • M. Sabri, M.F. & Danapalasingam, K.A. & Rahmat, M.F., 2016. "A review on hybrid electric vehicles architecture and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1433-1442.
  • Handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:1433-1442
    DOI: 10.1016/j.rser.2015.09.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115010060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.09.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    3. Hannan, M.A. & Azidin, F.A. & Mohamed, A., 2014. "Hybrid electric vehicles and their challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 135-150.
    4. Sorrell, Steve & Speirs, Jamie & Bentley, Roger & Miller, Richard & Thompson, Erica, 2012. "Shaping the global oil peak: A review of the evidence on field sizes, reserve growth, decline rates and depletion rates," Energy, Elsevier, vol. 37(1), pages 709-724.
    5. Kumar, Lalit & Jain, Shailendra, 2014. "Electric propulsion system for electric vehicular technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 924-940.
    6. Zhang, Pei & Yan, Fuwu & Du, Changqing, 2015. "A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 88-104.
    7. Axsen, Jonn & Burke, Andy & Kurani, Kenneth S, 2010. "Are Batteries Ready for Plug-in Hybrid Buyers?," Institute of Transportation Studies, Working Paper Series qt7vh184rw, Institute of Transportation Studies, UC Davis.
    8. Torres, J.L. & Gonzalez, R. & Gimenez, A. & Lopez, J., 2014. "Energy management strategy for plug-in hybrid electric vehicles. A comparative study," Applied Energy, Elsevier, vol. 113(C), pages 816-824.
    9. Sorrell, Steve & Speirs, Jamie & Bentley, Roger & Brandt, Adam & Miller, Richard, 2010. "Global oil depletion: A review of the evidence," Energy Policy, Elsevier, vol. 38(9), pages 5290-5295, September.
    10. Axsen, Jonn & Kurani, Kenneth S. & Burke, Andrew, 2010. "Are batteries ready for plug-in hybrid buyers?," Transport Policy, Elsevier, vol. 17(3), pages 173-182, May.
    11. Amjad, Shaik & Neelakrishnan, S. & Rudramoorthy, R., 2010. "Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1104-1110, April.
    12. Stigka, Eleni K. & Paravantis, John A. & Mihalakakou, Giouli K., 2014. "Social acceptance of renewable energy sources: A review of contingent valuation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 100-106.
    13. Sorrell, Steve & Miller, Richard & Bentley, Roger & Speirs, Jamie, 2010. "Oil futures: A comparison of global supply forecasts," Energy Policy, Elsevier, vol. 38(9), pages 4990-5003, September.
    14. Owen, Nick A. & Inderwildi, Oliver R. & King, David A., 2010. "The status of conventional world oil reserves--Hype or cause for concern?," Energy Policy, Elsevier, vol. 38(8), pages 4743-4749, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enang, Wisdom & Bannister, Chris, 2017. "Modelling and control of hybrid electric vehicles (A comprehensive review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1210-1239.
    2. Eunil Park & Jooyoung Lim & Yongwoo Cho, 2018. "Understanding the Emergence and Social Acceptance of Electric Vehicles as Next-Generation Models for the Automobile Industry," Sustainability, MDPI, vol. 10(3), pages 1-13, March.
    3. Iogansen, Xiatian & Wang, Kailai & Bunch, David & Matson, Grant & Circella, Giovanni, 2023. "Deciphering the factors associated with adoption of alternative fuel vehicles in California: An investigation of latent attitudes, socio-demographics, and neighborhood effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    4. Green, Erin H. & Skerlos, Steven J. & Winebrake, James J., 2014. "Increasing electric vehicle policy efficiency and effectiveness by reducing mainstream market bias," Energy Policy, Elsevier, vol. 65(C), pages 562-566.
    5. Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
    6. Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2016. "Italian youngsters' perceptions of alternative fuel vehicles: A fuzzy-set approach," Journal of Business Research, Elsevier, vol. 69(11), pages 5426-5430.
    7. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    8. Riba, Jordi-Roger & López-Torres, Carlos & Romeral, Luís & Garcia, Antoni, 2016. "Rare-earth-free propulsion motors for electric vehicles: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 367-379.
    9. Wu, Zezhou & He, Qiufeng & Li, Jiarun & Bi, Guoqiang & Antwi-Afari, Maxwell Fordjour, 2023. "Public attitudes and sentiments towards new energy vehicles in China: A text mining approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    10. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    11. Dixon, James & Andersen, Peter Bach & Bell, Keith & Træholt, Chresten, 2020. "On the ease of being green: An investigation of the inconvenience of electric vehicle charging," Applied Energy, Elsevier, vol. 258(C).
    12. Matthew J. Beck & John M. Rose & Stephen P. Greaves, 2017. "I can’t believe your attitude: a joint estimation of best worst attitudes and electric vehicle choice," Transportation, Springer, vol. 44(4), pages 753-772, July.
    13. Kumar Shalender & Naman Sharma, 2021. "Using extended theory of planned behaviour (TPB) to predict adoption intention of electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 665-681, January.
    14. Mandys, F., 2021. "Electric vehicles and consumer choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    15. Ali Mirchi & Saeed Hadian & Kaveh Madani & Omid M. Rouhani & Azadeh M. Rouhani, 2012. "World Energy Balance Outlook and OPEC Production Capacity: Implications for Global Oil Security," Energies, MDPI, vol. 5(8), pages 1-26, July.
    16. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    17. Egnér, Filippa & Trosvik, Lina, 2018. "Electric vehicle adoption in Sweden and the impact of local policy instruments," Energy Policy, Elsevier, vol. 121(C), pages 584-596.
    18. Raslavičius, Laurencas & Keršys, Artūras & Makaras, Rolandas, 2017. "Management of hybrid powertrain dynamics and energy consumption for 2WD, 4WD, and HMMWV vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 380-396.
    19. Choi, Siwon & Kwak, Kyuil & Yang, Soyoung & Lim, Sesil & Woo, JongRoul, 2022. "Effects of policy instruments on electric scooter adoption in Jakarta, Indonesia: A discrete choice experiment approach," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 373-384.
    20. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:1433-1442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.