IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v39y2011i3p1617-1629.html
   My bibliography  Save this item

Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
  2. repec:cdl:itsdav:qt1w3836d3 is not listed on IDEAS
  3. Plötz, Patrick & Funke, Simon Árpád & Jochem, Patrick, 2018. "The impact of daily and annual driving on fuel economy and CO2 emissions of plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 331-340.
  4. Plötz, Patrick & Funke, Simon & Jochem, Patrick, 2015. "Real-world fuel economy and CO₂ emissions of plug-in hybrid electric vehicles," Working Papers "Sustainability and Innovation" S1/2015, Fraunhofer Institute for Systems and Innovation Research (ISI).
  5. repec:cdl:itsdav:qt3qz440nr is not listed on IDEAS
  6. Brett Williams & Elliot Martin & Timothy Lipman & Daniel Kammen, 2011. "Plug-in-Hybrid Vehicle Use, Energy Consumption, and Greenhouse Emissions: An Analysis of Household Vehicle Placements in Northern California," Energies, MDPI, vol. 4(3), pages 1-23, March.
  7. Tiande Mo & Yu Li & Kin-tak Lau & Chi Kin Poon & Yinghong Wu & Yang Luo, 2022. "Trends and Emerging Technologies for the Development of Electric Vehicles," Energies, MDPI, vol. 15(17), pages 1-34, August.
  8. Nils Seckinger & Peter Radgen, 2021. "Dynamic Prospective Average and Marginal GHG Emission Factors—Scenario-Based Method for the German Power System until 2050," Energies, MDPI, vol. 14(9), pages 1-22, April.
  9. Jun Li & Bin Yang & Mingke He, 2023. "Capabilities Analysis of Electricity Energy Conservation and Carbon Emissions Reduction in Multi-Level Battery Electric Passenger Vehicle in China," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
  10. repec:cdl:itsdav:qt02620767 is not listed on IDEAS
  11. Zakerinia, Saleh, 2018. "Understanding the Role of Transportation in Meeting California’s Greenhouse Gas Emissions Reduction Target: A Focus on Technology Forcing Policies, Interactions with the Electric Sector and Mitigation," Institute of Transportation Studies, Working Paper Series qt0r69m651, Institute of Transportation Studies, UC Davis.
  12. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
  13. Katrašnik, Tomaž, 2013. "Impact of vehicle propulsion electrification on Well-to-Wheel CO2 emissions of a medium duty truck," Applied Energy, Elsevier, vol. 108(C), pages 236-247.
  14. Yang, Christopher, 2013. "Fuel electricity and plug-in electric vehicles in a low carbon fuel standard," Energy Policy, Elsevier, vol. 56(C), pages 51-62.
  15. Kim, Jae D., 2019. "Insights into residential EV charging behavior using energy meter data," Energy Policy, Elsevier, vol. 129(C), pages 610-618.
  16. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
  17. repec:cdl:itsdav:qt4cz226sf is not listed on IDEAS
  18. Green, Erin H. & Skerlos, Steven J. & Winebrake, James J., 2014. "Increasing electric vehicle policy efficiency and effectiveness by reducing mainstream market bias," Energy Policy, Elsevier, vol. 65(C), pages 562-566.
  19. Mandev, Ahmet & Plötz, Patrick & Sprei, Frances & Tal, Gil, 2022. "Empirical charging behavior of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 321(C).
  20. Chen, Yu & Lin, Boqiang, 2022. "Are consumers in China’s major cities happy with charging infrastructure for electric vehicles?," Applied Energy, Elsevier, vol. 327(C).
  21. Arslan, Okan & Yıldız, Barış & Ekin Karaşan, Oya, 2014. "Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips," Energy Policy, Elsevier, vol. 74(C), pages 168-178.
  22. Robinson, A.P. & Blythe, P.T. & Bell, M.C. & Hübner, Y. & Hill, G.A., 2013. "Analysis of electric vehicle driver recharging demand profiles and subsequent impacts on the carbon content of electric vehicle trips," Energy Policy, Elsevier, vol. 61(C), pages 337-348.
  23. Kitt, Shelby & Axsen, Jonn & Long, Zoe & Rhodes, Ekaterina, 2021. "The role of trust in citizen acceptance of climate policy: Comparing perceptions of government competence, integrity and value similarity," Ecological Economics, Elsevier, vol. 183(C).
  24. repec:cdl:itsdav:qt48w9z0jr is not listed on IDEAS
  25. Ling, Chen & Yang, Qing & Wang, Qingrui & Bartocci, Pietro & Jiang, Lei & Xu, Zishuo & Wang, Luyao, 2024. "A comprehensive consumption-based carbon accounting framework for power system towards low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
  26. Yang, Christopher, 2013. "A framework for allocating greenhouse gas emissions from electricity generation to plug-in electric vehicle charging," Energy Policy, Elsevier, vol. 60(C), pages 722-732.
  27. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.
  28. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
  29. De Gennaro, Michele & Paffumi, Elena & Martini, Giorgio, 2015. "Customer-driven design of the recharge infrastructure and Vehicle-to-Grid in urban areas: A large-scale application for electric vehicles deployment," Energy, Elsevier, vol. 82(C), pages 294-311.
  30. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
  31. Caperello, Nicolette & Kurani, Kenneth S. & TyreeHageman, Jennifer, 2013. "Do You Mind if I Plug-in My Car? How etiquette shapes PEV drivers’ vehicle charging behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 155-163.
  32. Xiao, Jingjie, 2013. "Grid integration and smart grid implementation of emerging technologies in electric power systems through approximate dynamic programming," MPRA Paper 58696, University Library of Munich, Germany.
  33. Braeuer, Fritz & Finck, Rafael & McKenna, Russell, 2020. "Comparing empirical and model-based approaches for calculating dynamic grid emission factors: An application to CO₂-minimizing storage dispatch in Germany," Working Paper Series in Production and Energy 44, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
  34. Axsen, Jonn & TyreeHageman, Jennifer & Lentz, Andy, 2012. "Lifestyle practices and pro-environmental technology," Ecological Economics, Elsevier, vol. 82(C), pages 64-74.
  35. Kim, Jae D. & Rahimi, Mansour, 2014. "Future energy loads for a large-scale adoption of electric vehicles in the city of Los Angeles: Impacts on greenhouse gas (GHG) emissions," Energy Policy, Elsevier, vol. 73(C), pages 620-630.
  36. Davies, Jamie & Kurani, Kenneth S., 2013. "Moving from assumption to observation: Implications for energy and emissions impacts of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 62(C), pages 550-560.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.