IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i1p176-186.html
   My bibliography  Save this article

Modeling generation expansion in the context of a security of supply mechanism based on long-term auctions. Application to the Colombian case

Author

Listed:
  • Rodilla, P.
  • Batlle, C.
  • Salazar, J.
  • Sánchez, J.J.

Abstract

In an attempt to provide electricity generation investors with appropriate economic incentives so as to maintain quality of supply at socially optimal levels, a growing number of electricity market regulators have opted for implementing a security of supply mechanism based on long-term auctions. In this context, the ability to analyze long-term investment dynamics is a key issue not only for market agents, but also for regulators. This paper describes a model developed to serve this purpose. A general system-dynamics-inspired methodology has been designed to be able to simulate these long-term auction mechanisms in the formats presently in place. A full-scale simulation based on the Colombian system was conducted to illustrate model capabilities.

Suggested Citation

  • Rodilla, P. & Batlle, C. & Salazar, J. & Sánchez, J.J., 2011. "Modeling generation expansion in the context of a security of supply mechanism based on long-term auctions. Application to the Colombian case," Energy Policy, Elsevier, vol. 39(1), pages 176-186, January.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:1:p:176-186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00713-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Ford, 2002. "Boom and Bust in Power Plant Construction: Lessons from the California Electricity Crisis," Journal of Industry, Competition and Trade, Springer, vol. 2(1), pages 59-74, June.
    2. Derek W. Bunn and Fernando Oliveira, 2001. "An Application of Agent-based Simulation to the New Electricity Trading Arrangements of England and Wales," Computing in Economics and Finance 2001 93, Society for Computational Economics.
    3. Park, Jung-Yeon & Ahn, Nam-Sung & Yoon, Yong-Beum & Koh, Kyung-Ho & Bunn, Derek W., 2007. "Investment incentives in the Korean electricity market," Energy Policy, Elsevier, vol. 35(11), pages 5819-5828, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zapata, Sebastian & Castaneda, Monica & Franco, Carlos Jaime & Dyner, Isaac, 2019. "Clean and secure power supply: A system dynamics based appraisal," Energy Policy, Elsevier, vol. 131(C), pages 9-21.
    2. Shahriyar Nasirov & Eugenio Cruz & Claudio A. Agostini & Carlos Silva, 2019. "Policy Makers’ Perspectives on the Expansion of Renewable Energy Sources in Chile’s Electricity Auctions," Energies, MDPI, vol. 12(21), pages 1-17, October.
    3. Heidarizadeh, Mohammad & Ahmadian, Mohammad, 2019. "Capacity certificate mechanism: A step forward toward a market based generation capacity incentive," Energy, Elsevier, vol. 172(C), pages 45-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2018. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Working Paper Series in Production and Energy 27, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    2. Dianat, Fateme & Khodakarami, Vahid & Hosseini, Seyed-Hossein & Shakouri G, Hamed, 2022. "Combining game theory concepts and system dynamics for evaluating renewable electricity development in fossil-fuel-rich countries in the Middle East and North Africa," Renewable Energy, Elsevier, vol. 190(C), pages 805-821.
    3. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    4. Hary, Nicolas & Rious, Vincent & Saguan, Marcelo, 2016. "The electricity generation adequacy problem: Assessing dynamic effects of capacity remuneration mechanisms," Energy Policy, Elsevier, vol. 91(C), pages 113-127.
    5. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    6. Karakatsani Nektaria V & Bunn Derek W., 2010. "Fundamental and Behavioural Drivers of Electricity Price Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-42, September.
    7. Sueyoshi, Toshiyuki, 2010. "An agent-based approach equipped with game theory: Strategic collaboration among learning agents during a dynamic market change in the California electricity crisis," Energy Economics, Elsevier, vol. 32(5), pages 1009-1024, September.
    8. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo & Möst, Dominik, 2007. "Agent-based simulation of electricity markets: a literature review," Working Papers "Sustainability and Innovation" S5/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    9. Kim, Hyunsook & Kim, Sung-Soo, 2012. "The resource adequacy scheme in the Korean electricity market," Energy Policy, Elsevier, vol. 47(C), pages 133-144.
    10. Esmaeili Aliabadi, Danial & Kaya, Murat & Sahin, Guvenc, 2017. "Competition, risk and learning in electricity markets: An agent-based simulation study," Applied Energy, Elsevier, vol. 195(C), pages 1000-1011.
    11. Ning Wang & Weisheng Xu & Weihui Shao & Zhiyu Xu, 2019. "A Q-Cube Framework of Reinforcement Learning Algorithm for Continuous Double Auction among Microgrids," Energies, MDPI, vol. 12(15), pages 1-26, July.
    12. Karla Atkins & Achla Marathe & Chris Barrett, 2007. "A computational approach to modeling commodity markets," Computational Economics, Springer;Society for Computational Economics, vol. 30(2), pages 125-142, September.
    13. Markose, Sheri & Alentorn, Amadeo & Koesrindartoto, Deddy & Allen, Peter & Blythe, Phil & Grosso, Sergio, 2007. "A smart market for passenger road transport (SMPRT) congestion: An application of computational mechanism design," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 2001-2032, June.
    14. Arango, Santiago & Larsen, Erik, 2011. "Cycles in deregulated electricity markets: Empirical evidence from two decades," Energy Policy, Elsevier, vol. 39(5), pages 2457-2466, May.
    15. Bunn, Derek W. & Oliveira, Fernando S., 2007. "Agent-based analysis of technological diversification and specialization in electricity markets," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1265-1278, September.
    16. Gaivoronskaia, E. & Tsyplakov, A., 2018. "Using a Modified Erev-Roth Algorithm in an Agent-Based Electricity Market Model," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 55-83.
    17. Ma, Tieju & Nakamori, Yoshiteru, 2009. "Modeling technological change in energy systems – From optimization to agent-based modeling," Energy, Elsevier, vol. 34(7), pages 873-879.
    18. Tarek Abdelzaher & Jiawei Han & Yifan Hao & Andong Jing & Dongxin Liu & Shengzhong Liu & Hoang Hai Nguyen & David M. Nicol & Huajie Shao & Tianshi Wang & Shuochao Yao & Yu Zhang & Omar Malik & Stephen, 2020. "Multiscale online media simulation with SocialCube," Computational and Mathematical Organization Theory, Springer, vol. 26(2), pages 145-174, June.
    19. Arango, Santiago & Dyner, Isaac & Larsen, Erik R., 2006. "Lessons from deregulation: Understanding electricity markets in South America," Utilities Policy, Elsevier, vol. 14(3), pages 196-207, September.
    20. Collins, Ross D. & Selin, Noelle E. & de Weck, Olivier L. & Clark, William C., 2017. "Using inclusive wealth for policy evaluation: Application to electricity infrastructure planning in oil-exporting countries," Ecological Economics, Elsevier, vol. 133(C), pages 23-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:1:p:176-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.