IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4149-d281890.html
   My bibliography  Save this article

Policy Makers’ Perspectives on the Expansion of Renewable Energy Sources in Chile’s Electricity Auctions

Author

Listed:
  • Shahriyar Nasirov

    (Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Avenida Diagonal Las Torres 2640, Peñalolén, Santiago 7941169, Chile)

  • Eugenio Cruz

    (Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Avenida Diagonal Las Torres 2640, Peñalolén, Santiago 7941169, Chile)

  • Claudio A. Agostini

    (School of Government, Universidad Adolfo Ibañez, Avenida Diagonal Las Torres 2640, Peñalolén, Santiago 7941169, Chile)

  • Carlos Silva

    (Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Avenida Diagonal Las Torres 2640, Peñalolén, Santiago 7941169, Chile)

Abstract

Chile has become one of the first few countries where renewable sources compete directly with conventional generation in price-based auctions. Moreover, the results of energy auctions during the last few years show a remarkable transition from conventional fossil fuels to renewable energies. In fact, the energy auction in 2017, to provide energy to customers from distribution companies, achieved a massive expansion in renewable technology at one of the lowest prices in the world. These positive results prompted the question if such results were permanent or temporal due to factors with limited effects. In this regard, this paper studies the key factors that drove the significant rise of renewable technologies in Chilean energy auctions, obtaining valuable lessons for regulators, not only in Chile, but also in the region and the world. For this purpose, we considered a well-proven method based on a hybrid multicriteria decision-making model to examine and prioritize the main drivers of the expansion of renewables in auctions. The results showed that some specific characteristics of the auction design, particularly the hourly supply blocks, the lead time for project construction, and contract duration, were the most significant drivers for the expansion of renewables in energy auctions. Moreover, the results showed that, provided that the auction design accommodates for such drivers, solar energy ends up as the most attractive technology in the Chilean auctions. The research also shows the main findings are robust by the application of a probabilistic sensitivity analysis.

Suggested Citation

  • Shahriyar Nasirov & Eugenio Cruz & Claudio A. Agostini & Carlos Silva, 2019. "Policy Makers’ Perspectives on the Expansion of Renewable Energy Sources in Chile’s Electricity Auctions," Energies, MDPI, vol. 12(21), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4149-:d:281890
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ullah, Kafait & Hamid, Salman & Mirza, Faisal Mehmood & Shakoor, Usman, 2018. "Prioritizing the gaseous alternatives for the road transport sector of Pakistan: A multi criteria decision making analysis," Energy, Elsevier, vol. 165(PB), pages 1072-1084.
    2. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena, 2013. "Evaluating future scenarios for the power generation sector using a Multi-Criteria Decision Analysis (MCDA) tool: The Portuguese case," Energy, Elsevier, vol. 52(C), pages 126-136.
    3. Elizondo Azuela, Gabriela & Barroso, Luiz & Khanna, Ashish & Wang, Xiaodong & Wu, Yun & Cunha, Gabriel, 2014. "Performance of renewable energy auctions : experience in Brazil, China and India," Policy Research Working Paper Series 7062, The World Bank.
    4. Chinese, Damiana & Nardin, Gioacchino & Saro, Onorio, 2011. "Multi-criteria analysis for the selection of space heating systems in an industrial building," Energy, Elsevier, vol. 36(1), pages 556-565.
    5. Brand, Bernhard & Missaoui, Rafik, 2014. "Multi-criteria analysis of electricity generation mix scenarios in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 251-261.
    6. del Río, Pablo & Linares, Pedro, 2014. "Back to the future? Rethinking auctions for renewable electricity support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 42-56.
    7. Klein, Sharon J.W. & Whalley, Stephanie, 2015. "Comparing the sustainability of U.S. electricity options through multi-criteria decision analysis," Energy Policy, Elsevier, vol. 79(C), pages 127-149.
    8. Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2017. "Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 496-511.
    9. Mastropietro, Paolo & Batlle, Carlos & Barroso, Luiz A. & Rodilla, Pablo, 2014. "Electricity auctions in South America: Towards convergence of system adequacy and RES-E support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 375-385.
    10. Streimikiene, Dalia & Balezentis, Tomas, 2013. "Multi-objective ranking of climate change mitigation policies and measures in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 144-153.
    11. Agostini, Claudio A. & Guzmán, Andrés M. & Nasirov, Shahriyar & Silva, Carlos, 2019. "A surplus based framework for cross-border electricity trade in South America," Energy Policy, Elsevier, vol. 128(C), pages 673-684.
    12. Rahman, Md. Mizanur & Paatero, Jukka V. & Lahdelma, Risto & A. Wahid, Mazlan, 2016. "Multicriteria-based decision aiding technique for assessing energy policy elements-demonstration to a case in Bangladesh," Applied Energy, Elsevier, vol. 164(C), pages 237-244.
    13. Moreno, R. & Barroso, L.A. & Rudnick, H. & Mocarquer, S. & Bezerra, B., 2010. "Auction approaches of long-term contracts to ensure generation investment in electricity markets: Lessons from the Brazilian and Chilean experiences," Energy Policy, Elsevier, vol. 38(10), pages 5758-5769, October.
    14. Malte Gephart & Corinna Klessmann & Fabian Wigand, 2017. "Renewable energy auctions – When are they (cost-)effective?," Energy & Environment, , vol. 28(1-2), pages 145-165, March.
    15. Shahriyar Nasirov & Carlos Silva & Claudio A. Agostini, 2015. "Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile," Energies, MDPI, vol. 8(5), pages 1-21, April.
    16. Vučijak, B. & Kupusović, T. & Midžić-Kurtagić, S. & Ćerić, A., 2013. "Applicability of multicriteria decision aid to sustainable hydropower," Applied Energy, Elsevier, vol. 101(C), pages 261-267.
    17. Peterseim, Juergen H. & White, Stuart & Tadros, Amir & Hellwig, Udo, 2013. "Concentrated solar power hybrid plants, which technologies are best suited for hybridisation?," Renewable Energy, Elsevier, vol. 57(C), pages 520-532.
    18. Shmelev, Stanislav E. & van den Bergh, Jeroen C.J.M., 2016. "Optimal diversity of renewable energy alternatives under multiple criteria: An application to the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 679-691.
    19. Scott, James A. & Ho, William & Dey, Prasanta K., 2012. "A review of multi-criteria decision-making methods for bioenergy systems," Energy, Elsevier, vol. 42(1), pages 146-156.
    20. Rodilla, P. & Batlle, C. & Salazar, J. & Sánchez, J.J., 2011. "Modeling generation expansion in the context of a security of supply mechanism based on long-term auctions. Application to the Colombian case," Energy Policy, Elsevier, vol. 39(1), pages 176-186, January.
    21. Şengül, Ümran & Eren, Miraç & Eslamian Shiraz, Seyedhadi & Gezder, Volkan & Şengül, Ahmet Bilal, 2015. "Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 617-625.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego Larrahondo & Ricardo Moreno & Harold R. Chamorro & Francisco Gonzalez-Longatt, 2021. "Comparative Performance of Multi-Period ACOPF and Multi-Period DCOPF under High Integration of Wind Power," Energies, MDPI, vol. 14(15), pages 1-15, July.
    2. Blanquiceth, J. & Cardemil, J.M. & Henríquez, M. & Escobar, R., 2023. "Thermodynamic evaluation of a pumped thermal electricity storage system integrated with large-scale thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Helena Martín & Sergio Coronas & Àlex Alonso & Jordi de la Hoz & José Matas, 2020. "Renewable Energy Auction Prices: Near Subsidy-Free?," Energies, MDPI, vol. 13(13), pages 1-21, July.
    4. del Río, Pablo & Kiefer, Christoph P., 2023. "Academic research on renewable electricity auctions: Taking stock and looking forward," Energy Policy, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hottenroth, H. & Sutardhio, C. & Weidlich, A. & Tietze, I. & Simon, S. & Hauser, W. & Naegler, T. & Becker, L. & Buchgeister, J. & Junne, T. & Lehr, U. & Scheel, O. & Schmidt-Scheele, R. & Ulrich, P. , 2022. "Beyond climate change. Multi-attribute decision making for a sustainability assessment of energy system transformation pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Volkart, Kathrin & Weidmann, Nicolas & Bauer, Christian & Hirschberg, Stefan, 2017. "Multi-criteria decision analysis of energy system transformation pathways: A case study for Switzerland," Energy Policy, Elsevier, vol. 106(C), pages 155-168.
    3. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    4. Thushara, De Silva M. & Hornberger, George M. & Baroud, Hiba, 2019. "Decision analysis to support the choice of a future power generation pathway for Sri Lanka," Applied Energy, Elsevier, vol. 240(C), pages 680-697.
    5. Anissa Frini & Sarah Benamor, 2018. "Making Decisions in a Sustainable Development Context: A State-of-the-Art Survey and Proposal of a Multi-period Single Synthesizing Criterion Approach," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 341-385, August.
    6. Bilgili, Faik & Zarali, Fulya & Ilgün, Miraç Fatih & Dumrul, Cüneyt & Dumrul, Yasemin, 2022. "The evaluation of renewable energy alternatives for sustainable development in Turkey using ‌intuitionistic‌ ‌fuzzy‌-TOPSIS method," Renewable Energy, Elsevier, vol. 189(C), pages 1443-1458.
    7. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    8. Cassetta, Ernesto & Monarca, Umberto & Nava, Consuelo Rubina & Meleo, Linda, 2017. "Is the answer blowin' in the wind (auctions)? An assessment of the Italian support scheme," Energy Policy, Elsevier, vol. 110(C), pages 662-674.
    9. Vögele, Stefan & Teja Josyabhatla, Vishnu & Ball, Christopher & Rhoden, Imke & Grajewski, Matthias & Rübbelke, Dirk & Kuckshinrichs, Wilhelm, 2023. "Robust assessment of energy scenarios from stakeholders' perspectives," Energy, Elsevier, vol. 282(C).
    10. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Rivero-Iglesias, Jose M. & Puente, Javier & Fernandez, Isabel & León, Omar, 2023. "Integrated model for the assessment of power generation alternatives through analytic hierarchy process and a fuzzy inference system. Case study of Spain," Renewable Energy, Elsevier, vol. 211(C), pages 563-581.
    12. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Evaluation of energy alternatives for sustainable development of energy sector in India: An integrated Shannon’s entropy fuzzy multi-criteria decision approach," Renewable Energy, Elsevier, vol. 171(C), pages 58-74.
    13. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    14. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    15. Aryanpur, Vahid & Atabaki, Mohammad Saeid & Marzband, Mousa & Siano, Pierluigi & Ghayoumi, Kiarash, 2019. "An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 58-74.
    16. Yilan, Gülşah & Kadirgan, M.A. Neşet & Çiftçioğlu, Gökçen A., 2020. "Analysis of electricity generation options for sustainable energy decision making: The case of Turkey," Renewable Energy, Elsevier, vol. 146(C), pages 519-529.
    17. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    18. Cassetta, Ernesto & Meleo, Linda & Monarca, Umberto & Nava, Consuelo R., 2017. "Is the answer blowin' in the wind (auctions)? An assessment of Italian auction procedures to promote onshore wind energy," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201709, University of Turin.
    19. Chiranjib Bhowmik & Sumit Bhowmik & Amitava Ray, 2021. "Selection of optimum green energy sources by considering environmental constructs and their technical criteria: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13890-13918, September.
    20. Khishtandar, Soheila & Zandieh, Mostafa & Dorri, Behrouz, 2017. "A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1130-1145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4149-:d:281890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.