IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v57y2013icp520-532.html
   My bibliography  Save this article

Concentrated solar power hybrid plants, which technologies are best suited for hybridisation?

Author

Listed:
  • Peterseim, Juergen H.
  • White, Stuart
  • Tadros, Amir
  • Hellwig, Udo

Abstract

This assessment aims to identify the most suitable concentrated solar power (CSP) technologies to hybridize with Rankine cycle power plants using conventional fuels, such as gas and coal, as well as non-conventional fuels, namely biomass and waste materials. The results derive from quantitative data, such as literature, industry information and own calculations, as well as qualitative data from an expert workshop. To incorporate the variety of technology criteria, quantitative and qualitative data the Analytical Hierarchy Process (AHP) is used as the multi-criteria decision making (MCDM) tool. Only CSP technologies able to directly or indirectly generate steam are compared in regards to feasibility, risk, environmental impact and Levelised Cost of Electricity (LCOE). Different sub-criteria are chosen to consider the most relevant aspects. The study focuses on the suitability of CSP technologies for hybridisation and results obtained are reality checked by comparison with plants already being built/under construction. The results of this assessment are time dependant and may change with new CSP technologies maturing and prices decreasing in the future.

Suggested Citation

  • Peterseim, Juergen H. & White, Stuart & Tadros, Amir & Hellwig, Udo, 2013. "Concentrated solar power hybrid plants, which technologies are best suited for hybridisation?," Renewable Energy, Elsevier, vol. 57(C), pages 520-532.
  • Handle: RePEc:eee:renene:v:57:y:2013:i:c:p:520-532
    DOI: 10.1016/j.renene.2013.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113001237
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zarza, Eduardo & Valenzuela, Loreto & León, Javier & Hennecke, Klaus & Eck, Markus & Weyers, H.-Dieter & Eickhoff, Martin, 2004. "Direct steam generation in parabolic troughs: Final results and conclusions of the DISS project," Energy, Elsevier, vol. 29(5), pages 635-644.
    2. Ramanathan, R. & Ganesh, L. S., 1995. "Energy resource allocation incorporating qualitative and quantitative criteria: An integrated model using goal programming and AHP," Socio-Economic Planning Sciences, Elsevier, vol. 29(3), pages 197-218, September.
    3. Nixon, J.D. & Dey, P.K. & Davies, P.A., 2010. "Which is the best solar thermal collection technology for electricity generation in north-west India? Evaluation of options using the analytical hierarchy process," Energy, Elsevier, vol. 35(12), pages 5230-5240.
    4. Sniezek, Janet A. & Henry, Rebecca A., 1989. "Accuracy and confidence in group judgment," Organizational Behavior and Human Decision Processes, Elsevier, vol. 43(1), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nixon, J.D. & Dey, P.K. & Davies, P.A., 2010. "Which is the best solar thermal collection technology for electricity generation in north-west India? Evaluation of options using the analytical hierarchy process," Energy, Elsevier, vol. 35(12), pages 5230-5240.
    2. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    3. Burin, Eduardo Konrad & Vogel, Tobias & Multhaupt, Sven & Thelen, Andre & Oeljeklaus, Gerd & Görner, Klaus & Bazzo, Edson, 2016. "Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant," Energy, Elsevier, vol. 117(P2), pages 416-428.
    4. Mohamed Ali Elleuch & Marwa Mallek & Ahmed Frikha & Wafik Hachicha & Awad M. Aljuaid & Murad Andejany, 2021. "Solving a Multiple User Energy Source Selection Problem Using a Fuzzy Multi-Criteria Group Decision-Making Approach," Energies, MDPI, vol. 14(14), pages 1-16, July.
    5. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    6. Demont, Matty & Rutsaert, Pieter & Ndour, Maimouna & Verbeke, Wim & Seck, Papa Abdoulaye & Tollens, Eric, 2012. "Experimental auctions, collective induction and choice shift: Willingness-to-pay for rice quality in Senegal," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126861, International Association of Agricultural Economists.
    7. Merad, Myriam & Dechy, Nicolas & Serir, Lisa & Grabisch, Michel & Marcel, Frédéric, 2013. "Using a multi-criteria decision aid methodology to implement sustainable development principles within an organization," European Journal of Operational Research, Elsevier, vol. 224(3), pages 603-613.
    8. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    9. Julia A. Minson & Jennifer S. Mueller & Richard P. Larrick, 2018. "The Contingent Wisdom of Dyads: When Discussion Enhances vs. Undermines the Accuracy of Collaborative Judgments," Management Science, INFORMS, vol. 64(9), pages 4177-4192, September.
    10. Jih-Jeng Huang, 2016. "Resource decision making for vertical and horizontal integration problems in an enterprise," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1363-1372, November.
    11. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Socio-techno-economic design of hybrid renewable energy system using optimization techniques," Renewable Energy, Elsevier, vol. 119(C), pages 459-472.
    12. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Lecat, F. & Flamant, G., 2017. "A thermal model to predict the dynamic performances of parabolic trough lines," Energy, Elsevier, vol. 141(C), pages 1187-1203.
    13. Shen, Yung-Chi & Chou, Chiyang James & Lin, Grace T.R., 2011. "The portfolio of renewable energy sources for achieving the three E policy goals," Energy, Elsevier, vol. 36(5), pages 2589-2598.
    14. Benbasat, Izak & Lim, John, 2000. "Information Technology Support For Debiasing Group Judgments: An Empirical Evaluation," Organizational Behavior and Human Decision Processes, Elsevier, vol. 83(1), pages 167-183, September.
    15. Glasnovic, Zvonimir & Margeta, Karmen & Premec, Krunoslav, 2016. "Could Key Engine, as a new open-source for RES technology development, start the third industrial revolution?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1194-1209.
    16. Mingtao Ding & Fangqiang Wei & Kaiheng Hu, 2012. "Property insurance against debris-flow disasters based on risk assessment and the principal–agent theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 801-817, February.
    17. Ahammed, Faisal & Azeem, Abdullahil, 2013. "Selection of the most appropriate package of Solar Home System using Analytic Hierarchy Process model in rural areas of Bangladesh," Renewable Energy, Elsevier, vol. 55(C), pages 6-11.
    18. Hongn, Marcos & Flores Larsen, Silvana, 2018. "Hydrothermal model for small-scale linear Fresnel absorbers with non-uniform stepwise solar distribution," Applied Energy, Elsevier, vol. 223(C), pages 329-346.
    19. Bonner, Bryan L. & Sillito, Sheli D. & Baumann, Michael R., 2007. "Collective estimation: Accuracy, expertise, and extroversion as sources of intra-group influence," Organizational Behavior and Human Decision Processes, Elsevier, vol. 103(1), pages 121-133, May.
    20. Prather, Larry J. & Middleton, Karen L., 2006. "Timing and selectivity of mutual fund managers: An empirical test of the behavioral decision-making theory," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 249-273, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:57:y:2013:i:c:p:520-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.