IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v211y2023icp563-581.html
   My bibliography  Save this article

Integrated model for the assessment of power generation alternatives through analytic hierarchy process and a fuzzy inference system. Case study of Spain

Author

Listed:
  • Rivero-Iglesias, Jose M.
  • Puente, Javier
  • Fernandez, Isabel
  • León, Omar

Abstract

The main objective of this research was to create a robust hierarchical model to evaluate the power generation technologies in the energy mix of any country, with particular emphasis on its use in the case study of Spain. An exhaustive literature review allowed to identify a balanced number of the most relevant criteria that the model should consider to evaluate the seven alternatives that cover most of the Spanish energy demand. Through expert knowledge, the Analytic Hierarchy Process (AHP) methodology allowed to obtain the local and global weights of the criteria used in the model. Using these weights and the assessments of alternatives for each criterion, their ranking was determined through both AHP and a novel fuzzy inference system (FIS), whose inference rules were automatically constructed based on the weights of the criteria and a distance minimization method. The design of this FIS constitutes the main contribution of the work, firstly, because it avoids a second round of experts consultations and, secondly, because it systematically conceptualises the knowledge base that allows to infer the individual evaluation of any alternative, without the risk of rank reversal that may occur if using only AHP. The results of the case study of Spain showed that environmental was the most important criterion. In terms of the comparative AHP merit order, Photovoltaic (PV) was ranked first and Coal last. In addition, the individual assessment of the technologies through FIS yielded results consistent with the previous AHP ranking. Finally, a sensitivity analysis was performed, which showed good stability in the results obtained.

Suggested Citation

  • Rivero-Iglesias, Jose M. & Puente, Javier & Fernandez, Isabel & León, Omar, 2023. "Integrated model for the assessment of power generation alternatives through analytic hierarchy process and a fuzzy inference system. Case study of Spain," Renewable Energy, Elsevier, vol. 211(C), pages 563-581.
  • Handle: RePEc:eee:renene:v:211:y:2023:i:c:p:563-581
    DOI: 10.1016/j.renene.2023.04.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123005670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abolhosseini, Shahrouz & Heshmati, Almas´ & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," Working Paper Series in Economics and Institutions of Innovation 374, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    2. Streimikiene, Dalia & Balezentis, Tomas & Krisciukaitienė, Irena & Balezentis, Alvydas, 2012. "Prioritizing sustainable electricity production technologies: MCDM approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3302-3311.
    3. Abbas Mardani & Ahmad Jusoh & Khalil MD Nor & Zainab Khalifah & Norhayati Zakwan & Alireza Valipour, 2015. "Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 28(1), pages 516-571, January.
    4. Maxim, Alexandru, 2014. "Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis," Energy Policy, Elsevier, vol. 65(C), pages 284-297.
    5. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    6. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    7. Štreimikienė, Dalia & Šliogerienė, Jūratė & Turskis, Zenonas, 2016. "Multi-criteria analysis of electricity generation technologies in Lithuania," Renewable Energy, Elsevier, vol. 85(C), pages 148-156.
    8. Cherp, Aleh & Jewell, Jessica, 2014. "The concept of energy security: Beyond the four As," Energy Policy, Elsevier, vol. 75(C), pages 415-421.
    9. Sepehr Hendiani & Ebrahim Sharifi & Morteza Bagherpour & Seyed Farid Ghannadpour, 2020. "A multi-criteria sustainability assessment approach for energy systems using sustainability triple bottom line attributes and linguistic preferences," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7771-7805, December.
    10. Strantzali, Eleni & Aravossis, Konstantinos & Livanos, Georgios A., 2017. "Evaluation of future sustainable electricity generation alternatives: The case of a Greek island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 775-787.
    11. Klein, Sharon J.W. & Whalley, Stephanie, 2015. "Comparing the sustainability of U.S. electricity options through multi-criteria decision analysis," Energy Policy, Elsevier, vol. 79(C), pages 127-149.
    12. Haris Doukas, 2013. "Linguistic multicriteria decision making for energy systems: building the ‘RE 2 S’ framework," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(5), pages 571-585, September.
    13. Haddad, Brahim & Liazid, Abdelkrim & Ferreira, Paula, 2017. "A multi-criteria approach to rank renewables for the Algerian electricity system," Renewable Energy, Elsevier, vol. 107(C), pages 462-472.
    14. Ozgur Demirta, 2013. "Evaluating the Best Renewable Energy Technology for Sustainable Energy Plannin," International Journal of Energy Economics and Policy, Econjournals, vol. 3(Special), pages 23-33.
    15. Lizarralde, Rafael & Ganzarain, Jaione & Zubizarreta, Mikel, 2022. "Adaptation of the MIVES method for the strategic selection of new technologies at an R&D centre. Focus on the manufacturing sector," Technovation, Elsevier, vol. 115(C).
    16. Rahman, Md. Mizanur & Paatero, Jukka V. & Lahdelma, Risto & A. Wahid, Mazlan, 2016. "Multicriteria-based decision aiding technique for assessing energy policy elements-demonstration to a case in Bangladesh," Applied Energy, Elsevier, vol. 164(C), pages 237-244.
    17. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
    18. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions," Renewable Energy, Elsevier, vol. 167(C), pages 99-115.
    19. Abdolreza Yazdani-Chamzini & Mohammad Majid Fouladgar & Edmundas Kazimieras Zavadskas & S. Hamzeh Haji Moini, 2013. "Selecting the optimal renewable energy using multi criteria decision making," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 14(5), pages 957-978, November.
    20. Ahmad, Salman & Tahar, Razman Mat, 2014. "Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia," Renewable Energy, Elsevier, vol. 63(C), pages 458-466.
    21. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    22. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    23. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    24. Chen, Hongyi & Kocaoglu, Dundar F., 2008. "A sensitivity analysis algorithm for hierarchical decision models," European Journal of Operational Research, Elsevier, vol. 185(1), pages 266-288, February.
    25. Hong, Jong Ho & Kim, Jitae & Son, Wonik & Shin, Heeyoung & Kim, Nahyun & Lee, Woong Ki & Kim, Jintae, 2019. "Long-term energy strategy scenarios for South Korea: Transition to a sustainable energy system," Energy Policy, Elsevier, vol. 127(C), pages 425-437.
    26. Mousavi, M. & Gitinavard, H. & Mousavi, S.M., 2017. "A soft computing based-modified ELECTRE model for renewable energy policy selection with unknown information," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 774-787.
    27. Abreu Kang, Takanni Hannaka & da Costa Soares Júnior, Antônio Marques & de Almeida, Adiel Teixeira, 2018. "Evaluating electric power generation technologies: A multicriteria analysis based on the FITradeoff method," Energy, Elsevier, vol. 165(PB), pages 10-20.
    28. Tagliapietra, Simone & Zachmann, Georg & Edenhofer, Ottmar & Glachant, Jean-Michel & Linares, Pedro & Loeschel, Andreas, 2019. "The European union energy transition: Key priorities for the next five years," Energy Policy, Elsevier, vol. 132(C), pages 950-954.
    29. Martín-Gamboa, Mario & Iribarren, Diego & García-Gusano, Diego & Dufour, Javier, 2019. "Enhanced prioritisation of prospective scenarios for power generation in Spain: How and which one?," Energy, Elsevier, vol. 169(C), pages 369-379.
    30. Victoria, Marta & Gallego-Castillo, Cristobal, 2019. "Hourly-resolution analysis of electricity decarbonization in Spain (2017–2030)," Applied Energy, Elsevier, vol. 233, pages 674-690.
    31. Stein, Eric W., 2013. "A comprehensive multi-criteria model to rank electric energy production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 640-654.
    32. Parrado-Hernando, Gonzalo & Pfeifer, Antun & Frechoso, Fernando & Miguel González, Luis Javier & Duić, Neven, 2022. "A novel approach to represent the energy system in integrated assessment models," Energy, Elsevier, vol. 258(C).
    33. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    34. Lee, Hsing-Chen & Chang, Ching-Ter, 2018. "Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 883-896.
    35. Indre Siksnelyte-Butkiene & Edmundas Kazimieras Zavadskas & Dalia Streimikiene, 2020. "Multi-Criteria Decision-Making (MCDM) for the Assessment of Renewable Energy Technologies in a Household: A Review," Energies, MDPI, vol. 13(5), pages 1-22, March.
    36. Şengül, Ümran & Eren, Miraç & Eslamian Shiraz, Seyedhadi & Gezder, Volkan & Şengül, Ahmet Bilal, 2015. "Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 617-625.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    3. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Evaluation of energy alternatives for sustainable development of energy sector in India: An integrated Shannon’s entropy fuzzy multi-criteria decision approach," Renewable Energy, Elsevier, vol. 171(C), pages 58-74.
    4. Bilgili, Faik & Zarali, Fulya & Ilgün, Miraç Fatih & Dumrul, Cüneyt & Dumrul, Yasemin, 2022. "The evaluation of renewable energy alternatives for sustainable development in Turkey using ‌intuitionistic‌ ‌fuzzy‌-TOPSIS method," Renewable Energy, Elsevier, vol. 189(C), pages 1443-1458.
    5. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    6. Yilan, Gülşah & Kadirgan, M.A. Neşet & Çiftçioğlu, Gökçen A., 2020. "Analysis of electricity generation options for sustainable energy decision making: The case of Turkey," Renewable Energy, Elsevier, vol. 146(C), pages 519-529.
    7. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    8. Sitorus, Fernando & Brito-Parada, Pablo R., 2020. "A multiple criteria decision making method to weight the sustainability criteria of renewable energy technologies under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    10. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    11. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    12. Ali Mostafaeipour & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Mehdi Jahangiri & Kuaanan Techato, 2020. "A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    13. Hashemizadeh, Ali & Ju, Yanbing & Bamakan, Seyed Mojtaba Hosseini & Le, Hoang Phong, 2021. "Renewable energy investment risk assessment in belt and road initiative countries under uncertainty conditions," Energy, Elsevier, vol. 214(C).
    14. Colla, Martin & Ioannou, Anastasia & Falcone, Gioia, 2020. "Critical review of competitiveness indicators for energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    15. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    16. Seddiki, Mohammed & Bennadji, Amar, 2019. "Multi-criteria evaluation of renewable energy alternatives for electricity generation in a residential building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 101-117.
    17. Ali Mostafaeipour & Ali Sadeghi Sedeh & Shahariar Chowdhury & Kuaanan Techato, 2020. "Ranking Potential Renewable Energy Systems to Power On-Farm Fertilizer Production," Sustainability, MDPI, vol. 12(19), pages 1-27, September.
    18. Dongxiao Niu & Hao Zhen & Min Yu & Keke Wang & Lijie Sun & Xiaomin Xu, 2020. "Prioritization of Renewable Energy Alternatives for China by Using a Hybrid FMCDM Methodology with Uncertain Information," Sustainability, MDPI, vol. 12(11), pages 1-26, June.
    19. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    20. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:211:y:2023:i:c:p:563-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.