IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v34y2006i17p2994-3005.html
   My bibliography  Save this article

Travel demand policies for saving oil during a supply emergency

Author

Listed:
  • Noland, Robert B.
  • Cowart, William A.
  • Fulton, Lewis M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Noland, Robert B. & Cowart, William A. & Fulton, Lewis M., 2006. "Travel demand policies for saving oil during a supply emergency," Energy Policy, Elsevier, vol. 34(17), pages 2994-3005, November.
  • Handle: RePEc:eee:enepol:v:34:y:2006:i:17:p:2994-3005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(05)00153-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel J. Graham & Stephen Glaister, 2002. "The Demand for Automobile Fuel: A Survey of Elasticities," Journal of Transport Economics and Policy, University of Bath, vol. 36(1), pages 1-25, January.
    2. Robert Noland & John Polak & Michael Bell & Neil Thorpe, 2003. "How much disruption to activities could fuel shortages cause? – The British fuel crisis of September 2000," Transportation, Springer, vol. 30(4), pages 459-481, November.
    3. Delucchi, Mark & Burke, Andy & Lipman, Timothy & Miller, Marshall, 2000. "Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model," Institute of Transportation Studies, Working Paper Series qt1np1h2zp, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gusdorf, Francois & Hallegatte, Stephane, 2007. "Behaviors and housing inertia are key factors in determining the consequences of a shock in transportation costs," Energy Policy, Elsevier, vol. 35(6), pages 3483-3495, June.
    2. Paul Minett & John Pearce, 2011. "Estimating the Energy Consumption Impact of Casual Carpooling," Energies, MDPI, vol. 4(1), pages 1-14, January.
    3. Zhong, Lin & Zhang, Kenan & (Marco) Nie, Yu & Xu, Jiuping, 2020. "Dynamic carpool in morning commute: Role of high-occupancy-vehicle (HOV) and high-occupancy-toll (HOT) lanes," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 98-119.
    4. Echeverría, Lucía & Gimenez-Nadal, José Ignacio & Molina, José Alberto, 2021. "Carpooling: User Profiles and Well-being," IZA Discussion Papers 14736, Institute of Labor Economics (IZA).
    5. Shaheen, Susan PhD & Cohen, Adam MCRP & Bayen, Alexandre PhD, 2018. "The Benefits of Carpooling," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7jx6z631, Institute of Transportation Studies, UC Berkeley.
    6. Liu, Xiaobing & Yan, Xuedong & Liu, Feng & Wang, Rui & Leng, Yan, 2019. "A trip-specific model for fuel saving estimation and subsidy policy making of carpooling based on empirical data," Applied Energy, Elsevier, vol. 240(C), pages 295-311.
    7. Wanjing Ma & Hanzhou Xie & Baoxin Han, 2012. "Development and Evaluation of an Economic-Driving Assistance Program for Transit Vehicles," Energies, MDPI, vol. 5(2), pages 1-15, February.
    8. de Grange, Louis & Troncoso, Rodrigo & González, Felipe, 2012. "An empirical evaluation of the impact of three urban transportation policies on transit use," Transport Policy, Elsevier, vol. 22(C), pages 11-19.
    9. Yanwei Li & Araz Taeihagh & Martin De Jong, 2018. "The Governance of Risks in Ridesharing: A Revelatory Case from Singapore," Energies, MDPI, vol. 11(5), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiaxing & Matsumoto, Shigeru, 2022. "Can subsidy programs lead consumers to select “greener” products?: Evidence from the Eco-car program in Japan," Research in Transportation Economics, Elsevier, vol. 91(C).
    2. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "A meta-analysis on the price elasticity of energy demand," Energy Policy, Elsevier, vol. 102(C), pages 549-568.
    3. Juul, Nina, 2012. "Battery prices and capacity sensitivity: Electric drive vehicles," Energy, Elsevier, vol. 47(1), pages 403-410.
    4. repec:zbw:rwirep:0209 is not listed on IDEAS
    5. Liddle, Brantley & Parker, Steven, 2022. "One more for the road: Reconsidering whether OECD gasoline income and price elasticities have changed over time," Energy Economics, Elsevier, vol. 114(C).
    6. Charles Raux, 2011. "Downstream Emissions Trading for Transport," Transportation Research, Economics and Policy, in: Werner Rothengatter & Yoshitsugu Hayashi & Wolfgang Schade (ed.), Transport Moving to Climate Intelligence, chapter 0, pages 209-226, Springer.
    7. Bergantino, Angela Stefania & Intini, Mario & Perdiguero, Jordi, 2020. "Pay cycles and fuel price: a quasi experimental approach," The Warwick Economics Research Paper Series (TWERPS) 1288, University of Warwick, Department of Economics.
    8. repec:zbw:rwirep:0227 is not listed on IDEAS
    9. Frondel, Manuel & Ritter, Nolan & Vance, Colin, 2012. "Heterogeneity in the rebound effect: Further evidence for Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 34(2), pages 461-467.
    10. Dujuan Yang & Harry Timmermans & Aloys Borgers, 2016. "The prevalence of context-dependent adjustment of activity-travel patterns in energy conservation strategies: results from a mixture-amount stated adaptation experiment," Transportation, Springer, vol. 43(1), pages 79-100, January.
    11. Lawrence Goulder, 2007. "Distributional and Efficiency Impacts of Increased U.S. Gasoline Taxes," Discussion Papers 07-009, Stanford Institute for Economic Policy Research.
    12. Arentze, Theo & Timmermans, Harry, 2007. "Parametric action decision trees: Incorporating continuous attribute variables into rule-based models of discrete choice," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 772-783, August.
    13. Goetzke, Frank & Vance, Colin, 2018. "Is gasoline price elasticity in the United States increasing? Evidence from the 2009 and 2017 national household travel surveys," Ruhr Economic Papers 765, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    14. Arentze, Theo & Hofman, Frank & Timmermans, Harry, 2004. "Predicting multi-faceted activity-travel adjustment strategies in response to possible congestion pricing scenarios using an Internet-based stated adaptation experiment," Transport Policy, Elsevier, vol. 11(1), pages 31-41, January.
    15. Britt Groosman & Nicholas Muller & Erin O’Neill-Toy, 2011. "The Ancillary Benefits from Climate Policy in the United States," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 50(4), pages 585-603, December.
    16. Kurt Kratena & Ina Meyer & Michael Wüger, 2009. "Ökonomische, technologische und soziodemographische Einflussfaktoren der Energienachfrage," WIFO Monatsberichte (monthly reports), WIFO, vol. 82(7), pages 525-538, July.
    17. Manuel Frondel & Colin Vance, 2009. "Driving for Fun? – A Comparison of Weekdays and Weekend Travel," Ruhr Economic Papers 0103, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    18. Donna, Javier D., 2018. "Measuring Long-Run Price Elasticities in Urban Travel Demand," MPRA Paper 90059, University Library of Munich, Germany.
    19. Frondel, Manuel & Vance, Colin, 2009. "Driving for Fun? – A Comparison of Weekdays and Weekend Travel," Ruhr Economic Papers 103, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    20. Orlando Reyes. & Roberto Escalante. & Anna Matas., 2010. "La demanda de gasolinas en México: Efectos y alternativas ante el cambio climático," Economía: teoría y práctica, Universidad Autónoma Metropolitana, México, vol. 32(1), pages 83-111, Enero-Jun.
    21. González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2014. "Techno-economic assessment of lightweight and zero emission vehicles deployment in the passenger car fleet of developing countries," Applied Energy, Elsevier, vol. 123(C), pages 129-142.
    22. Melo, Patricia C. & Ramli, Ahmad Razi, 2014. "Estimating fuel demand elasticities to evaluate CO2 emissions: Panel data evidence for the Lisbon Metropolitan Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 30-46.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:34:y:2006:i:17:p:2994-3005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.