IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v130y2019icp32-40.html
   My bibliography  Save this article

Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions

Author

Listed:
  • Plötz, Patrick
  • Gnann, Till
  • Jochem, Patrick
  • Yilmaz, Hasan Ümitcan
  • Kaschub, Thomas

Abstract

Despite the comparatively limited stock of vehicles, heavy-duty road transport is responsible for a major share of CO2 emissions from the European transport sector. Electric trucks powered by overhead lines, so-called trolley trucks or catenary hybrid trucks, have been proposed as a potential GHG mitigation option. However, from the perspective of the energy system, trolley trucks constitute an additional and inflexible electricity demand. Here, we analyse scenarios with an ambitious European market diffusion of trolley trucks and their impact on the electricity system and CO2 emissions. Our results show that trolley trucks can noteworthily reduce the CO2 emissions from heavy road transport even when the additional CO2 emissions from electricity generation are taken into account. Furthermore, the actual impact of the additional load from trolley trucks on the total energy system is limited. Compared to the anticipated electricity demand from passenger cars in 2030, trolley trucks require less energy and the load is more equally distributed over daytime. Our findings thus show that electric trucks are an interesting option for CO2 mitigation in heavy road transport.

Suggested Citation

  • Plötz, Patrick & Gnann, Till & Jochem, Patrick & Yilmaz, Hasan Ümitcan & Kaschub, Thomas, 2019. "Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions," Energy Policy, Elsevier, vol. 130(C), pages 32-40.
  • Handle: RePEc:eee:enepol:v:130:y:2019:i:c:p:32-40
    DOI: 10.1016/j.enpol.2019.03.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519302150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.03.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2015. "Modelling market diffusion of electric vehicles with real world driving data – German market and policy options," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 95-112.
    2. Heinrichs, Heidi & Jochem, Patrick & Fichtner, Wolf, 2014. "Including road transport in the EU ETS (European Emissions Trading System): A model-based analysis of the German electricity and transport sector," Energy, Elsevier, vol. 69(C), pages 708-720.
    3. Jochem, Patrick & Babrowski, Sonja & Fichtner, Wolf, 2015. "Assessing CO2 emissions of electric vehicles in Germany in 2030," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 68-83.
    4. Bühler, Georg & Jochem, Patrick, 2008. "CO2 Emission Reduction in Freight Transports How to Stimulate Environmental Friendly Behaviour?," ZEW Discussion Papers 08-066, ZEW - Leibniz Centre for European Economic Research.
    5. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    6. Plötz, Patrick & Gnann, Till & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data — Part I: Model structure and validation," Ecological Economics, Elsevier, vol. 107(C), pages 411-421.
    7. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data: German market and policy options," Working Papers "Sustainability and Innovation" S12/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    8. Talebian, Hoda & Herrera, Omar E. & Tran, Martino & Mérida, Walter, 2018. "Electrification of road freight transport: Policy implications in British Columbia," Energy Policy, Elsevier, vol. 115(C), pages 109-118.
    9. Piecyk, Maja I. & McKinnon, Alan C., 2010. "Forecasting the carbon footprint of road freight transport in 2020," International Journal of Production Economics, Elsevier, vol. 128(1), pages 31-42, November.
    10. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    11. Patrick Plötz & Simon Árpád Funke & Patrick Jochem, 2018. "Empirical Fuel Consumption and CO2 Emissions of Plug‐In Hybrid Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 773-784, August.
    12. Plötz, Patrick & Gnann, Till & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data. Part I: Model structure and validation," Working Papers "Sustainability and Innovation" S4/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    13. Slednev, Viktor & Bertsch, Valentin & Ruppert, Manuel & Fichtner, Wolf, 2017. "Highly resolved optimal renewable allocation planning in power systems under consideration of dynamic grid topology," MPRA Paper 79706, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomáš Skrúcaný & Martin Kendra & Ondrej Stopka & Saša Milojević & Tomasz Figlus & Csaba Csiszár, 2019. "Impact of the Electric Mobility Implementation on the Greenhouse Gases Production in Central European Countries," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    2. Nils Boysen & Dirk Briskorn & Stefan Schwerdfeger, 2023. "How to charge while driving: scheduling point-to-point deliveries of an electric vehicle under overhead wiring," Journal of Scheduling, Springer, vol. 26(1), pages 19-41, February.
    3. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Langenmayr, Uwe & Ruppert, Manuel, 2023. "Renewable origin, additionality, temporal and geographical correlation – eFuels production in Germany under the RED II regime," Energy Policy, Elsevier, vol. 183(C).
    5. Breed, Annelis K. & Speth, Daniel & Plötz, Patrick, 2021. "CO2 fleet regulation and the future market diffusion of zero-emission trucks in Europe," Energy Policy, Elsevier, vol. 159(C).
    6. Philipp Kluschke & Fabian Neumann, 2019. "Interaction of a Hydrogen Refueling Station Network for Heavy-Duty Vehicles and the Power System in Germany for 2050," Papers 1908.10119, arXiv.org.
    7. Flávia Mendes de Almeida Collaço & Ana Carolina Rodrigues Teixeira & Pedro Gerber Machado & Raquel Rocha Borges & Thiago Luis Felipe Brito & Dominique Mouette, 2022. "Road Freight Transport Literature and the Achievements of the Sustainable Development Goals—A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    8. Vallera, A.M. & Nunes, P.M. & Brito, M.C., 2021. "Why we need battery swapping technology," Energy Policy, Elsevier, vol. 157(C).
    9. Lei Xu & Zongfei Wang & Hasan Ümitcan Yilmaz & Witold-Roger Poganietz & Hongtao Ren & Ying Guo, 2021. "Considering the Impacts of Metal Depletion on the European Electricity System," Energies, MDPI, vol. 14(6), pages 1-14, March.
    10. Teixeira, Ana Carolina Rodrigues & Machado, Pedro Gerber & Borges, Raquel Rocha & Mouette, Dominique, 2020. "Public policies to implement alternative fuels in the road transport sector," Transport Policy, Elsevier, vol. 99(C), pages 345-361.
    11. Schwerdfeger, Stefan & Bock, Stefan & Boysen, Nils & Briskorn, Dirk, 2022. "Optimizing the electrification of roads with charge-while-drive technology," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1111-1127.
    12. Jun Li & Bin Yang & Mingke He, 2023. "Capabilities Analysis of Electricity Energy Conservation and Carbon Emissions Reduction in Multi-Level Battery Electric Passenger Vehicle in China," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    13. Haddad, Diala & Konstantinou, Theodora & Aliprantis, Dionysios & Gkritza, Konstantina & Pekarek, Steven & Haddock, John, 2022. "Analysis of the financial viability of high-powered electric roadways: A case study for the state of Indiana," Energy Policy, Elsevier, vol. 171(C).
    14. Niklas Jakobsson & Elias Hartvigsson & Maria Taljegard & Filip Johnsson, 2023. "Substation Placement for Electric Road Systems," Energies, MDPI, vol. 16(10), pages 1-19, May.
    15. Tomasz Wisniewski & Blanka Tundys, 2022. "Determinants of Growth of the Electric Car Market – Investigating on the Truck Market," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 210-222.
    16. Alberto Danese & Michele Garau & Andreas Sumper & Bendik Nybakk Torsæter, 2021. "Electrical Infrastructure Design Methodology of Dynamic and Static Charging for Heavy and Light Duty Electric Vehicles," Energies, MDPI, vol. 14(12), pages 1-15, June.
    17. Rose, Philipp & Wietschel, Martin & Gnann, Till, 2020. "Wie könnte ein Tankstellenaufbau für Brennstoffzellen-Lkw in Deutschland aussehen?," Working Papers "Sustainability and Innovation" S09/2020, Fraunhofer Institute for Systems and Innovation Research (ISI).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    2. Van, Tien Linh Cao & Barthelmes, Lukas & Gnann, Till & Speth, Daniel & Kagerbauer, Martin, 2021. "Addressing the gaps in market diffusion modeling of electrical vehicles: A case study from Germany for the integration of environmental policy measures," Working Papers "Sustainability and Innovation" S05/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    3. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    4. Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
    5. Gnann, T. & Speth, D. & Seddig, K. & Stich, M. & Schade, W. & Gómez Vilchez, J.J., 2022. "How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Zhang, Cen & Schmöcker, Jan-Dirk & Kuwahara, Masahiro & Nakamura, Toshiyuki & Uno, Nobuhiro, 2020. "A diffusion model for estimating adoption patterns of a one-way carsharing system in its initial years," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 135-150.
    7. Ensslen, Axel & Gnann, Till & Jochem, Patrick & Plötz, Patrick & Dütschke, Elisabeth & Fichtner, Wolf, 2020. "Can product service systems support electric vehicle adoption?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 343-359.
    8. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2018. "IRPsim: A techno-socio-economic energy system model vision for business strategy assessment at municipal level," Contributions of the Institute for Infrastructure and Resources Management 02/2018, University of Leipzig, Institute for Infrastructure and Resources Management.
    9. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2019. "A review of designing empirically grounded agent-based models of innovation diffusion: Development process, conceptual foundation and research agenda," Contributions of the Institute for Infrastructure and Resources Management 01/2019, University of Leipzig, Institute for Infrastructure and Resources Management.
    10. Romano Alberto Acri & Silvia Barone & Paolo Cambula & Valter Cecchini & Maria Carmen Falvo & Jacopo Lepore & Matteo Manganelli & Federico Santi, 2021. "Forecast of the Demand for Electric Mobility for Rome–Fiumicino International Airport," Energies, MDPI, vol. 14(17), pages 1-19, August.
    11. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    12. Xie, Fei & Lin, Zhenhong, 2017. "Market-driven automotive industry compliance with fuel economy and greenhouse gas standards: Analysis based on consumer choice," Energy Policy, Elsevier, vol. 108(C), pages 299-311.
    13. Gnann, Till & Speth, Daniel & Plötz, Patrick & Wietschel, Martin & Krail, Michael, 2022. "Markthochlaufszenarien für Elektrofahrzeuge: Rückblick und Ausblick bis 2030," Working Papers "Sustainability and Innovation" S05/2022, Fraunhofer Institute for Systems and Innovation Research (ISI).
    14. Plötz, Patrick & Jakobsson, Niklas & Sprei, Frances, 2017. "On the distribution of individual daily driving distances," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 213-227.
    15. Viri, Riku & Mäkinen, Johanna & Liimatainen, Heikki, 2021. "Modelling car fleet renewal in Finland: A model and development speed-based scenarios," Transport Policy, Elsevier, vol. 112(C), pages 63-79.
    16. Globisch, Joachim & Plötz, Patrick & Dütschke, Elisabeth & Wietschel, Martin, 2019. "Consumer preferences for public charging infrastructure for electric vehicles," Transport Policy, Elsevier, vol. 81(C), pages 54-63.
    17. Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
    18. Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.
    19. Jochem, Patrick & Babrowski, Sonja & Fichtner, Wolf, 2015. "Assessing CO2 emissions of electric vehicles in Germany in 2030," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 68-83.
    20. Plötz, Patrick & Schneider, Uta & Globisch, Joachim & Dütschke, Elisabeth, 2014. "Who will buy electric vehicles? Identifying early adopters in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 96-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:130:y:2019:i:c:p:32-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.