IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4217-d1151683.html
   My bibliography  Save this article

Substation Placement for Electric Road Systems

Author

Listed:
  • Niklas Jakobsson

    (Department of Space, Earth and Environment, Energy Technology, Chalmers University of Technology, 412 96 Gothenburg, Sweden)

  • Elias Hartvigsson

    (Department of Space, Earth and Environment, Energy Technology, Chalmers University of Technology, 412 96 Gothenburg, Sweden)

  • Maria Taljegard

    (Department of Space, Earth and Environment, Energy Technology, Chalmers University of Technology, 412 96 Gothenburg, Sweden)

  • Filip Johnsson

    (Department of Space, Earth and Environment, Energy Technology, Chalmers University of Technology, 412 96 Gothenburg, Sweden)

Abstract

One option to avoid range issues for electrified heavy vehicles, and the large individual batteries for each such vehicle, is to construct electric road systems (ERS), where vehicles are supplied with electricity while driving. In this article, a model has been developed that calculates the cost for supplying an ERS with electricity from a regional grid to a road in the form of cables and substations, considering the power demand profile for heavy transport. The modeling accounts for electric losses and voltage drop in cables and transformers. We have used the model to exhaustively compute and compared the cost of different combinations of substation sizes and locations along the road, using a European highway in West Sweden as a case study. Our results show that the costs for building an electricity distribution system for an ERS vary only to a minor extent with the location of substations (10% difference between the cheapest cost and the average cost of all configurations). Furthermore, we have varied the peak and average power demand profile for the investigated highway to investigate the impact of a specific demand profile on the results. The results from this variation show that the sum of the peak power demand is the most important factor in system cost. Specifically, a 30% change in the peak power demand for the road has a significant impact on the electricity supply system cost. A reduction in the geographical variation of power demand along the road has no significant impact on the electricity distribution system cost as long as the aggregated peak power demand for all road segments is held constant. The results of the work are relevant as input to future work on comparing the cost–benefit of ERS with other alternatives when reducing CO 2 from road traffic—in particular from heavy road traffic.

Suggested Citation

  • Niklas Jakobsson & Elias Hartvigsson & Maria Taljegard & Filip Johnsson, 2023. "Substation Placement for Electric Road Systems," Energies, MDPI, vol. 16(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4217-:d:1151683
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2017. "Spacial and dynamic energy demand of the E39 highway – Implications on electrification options," Applied Energy, Elsevier, vol. 195(C), pages 681-692.
    2. Plötz, Patrick & Gnann, Till & Jochem, Patrick & Yilmaz, Hasan Ümitcan & Kaschub, Thomas, 2019. "Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions," Energy Policy, Elsevier, vol. 130(C), pages 32-40.
    3. Hasan Huseyin Coban & Aysha Rehman & Abdullah Mohamed, 2022. "Analyzing the Societal Cost of Electric Roads Compared to Batteries and Oil for All Forms of Road Transport," Energies, MDPI, vol. 15(5), pages 1-20, March.
    4. Jesko Schulte & Henrik Ny, 2018. "Electric Road Systems: Strategic Stepping Stone on the Way towards Sustainable Freight Transport?," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristian Giovanni Colombo & Fabio Borghetti & Michela Longo & Federica Foiadelli, 2023. "Electrification of Motorway Network: A Methodological Approach to Define Location of Charging Infrastructure for EV," Sustainability, MDPI, vol. 15(23), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Danese & Michele Garau & Andreas Sumper & Bendik Nybakk Torsæter, 2021. "Electrical Infrastructure Design Methodology of Dynamic and Static Charging for Heavy and Light Duty Electric Vehicles," Energies, MDPI, vol. 14(12), pages 1-15, June.
    2. Hasan Huseyin Coban & Aysha Rehman & Abdullah Mohamed, 2022. "Analyzing the Societal Cost of Electric Roads Compared to Batteries and Oil for All Forms of Road Transport," Energies, MDPI, vol. 15(5), pages 1-20, March.
    3. Flávia Mendes de Almeida Collaço & Ana Carolina Rodrigues Teixeira & Pedro Gerber Machado & Raquel Rocha Borges & Thiago Luis Felipe Brito & Dominique Mouette, 2022. "Road Freight Transport Literature and the Achievements of the Sustainable Development Goals—A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    4. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2019. "Electric Vehicles as Flexibility Management Strategy for the Electricity System—A Comparison between Different Regions of Europe," Energies, MDPI, vol. 12(13), pages 1-19, July.
    5. Rui Ren & Wanjie Hu & Jianjun Dong & Bo Sun & Yicun Chen & Zhilong Chen, 2019. "A Systematic Literature Review of Green and Sustainable Logistics: Bibliometric Analysis, Research Trend and Knowledge Taxonomy," IJERPH, MDPI, vol. 17(1), pages 1-25, December.
    6. Boshuai Zhao & Juliang Zhang & Wenchao Wei, 2019. "Impact of Time Restriction and Logistics Sprawl on Urban Freight and Environment: The Case of Beijing Agricultural Freight," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
    7. Carlo Cunanan & Manh-Kien Tran & Youngwoo Lee & Shinghei Kwok & Vincent Leung & Michael Fowler, 2021. "A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles," Clean Technol., MDPI, vol. 3(2), pages 1-16, June.
    8. Gudmunds, D. & Nyholm, E. & Taljegard, M. & Odenberger, M., 2020. "Self-consumption and self-sufficiency for household solar producers when introducing an electric vehicle," Renewable Energy, Elsevier, vol. 148(C), pages 1200-1215.
    9. Pedro G. Machado & Ana C. R. Teixeira & Flavia M. A. Collaço & Dominique Mouette, 2021. "Review of life cycle greenhouse gases, air pollutant emissions and costs of road medium and heavy‐duty trucks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    10. Nils Boysen & Dirk Briskorn & Stefan Schwerdfeger, 2023. "How to charge while driving: scheduling point-to-point deliveries of an electric vehicle under overhead wiring," Journal of Scheduling, Springer, vol. 26(1), pages 19-41, February.
    11. Pedro Gerber Machado & Ana Carolina Rodrigues Teixeira & Flavia Mendes de Almeida Collaço & Adam Hawkes & Dominique Mouette, 2020. "Assessment of Greenhouse Gases and Pollutant Emissions in the Road Freight Transport Sector: A Case Study for São Paulo State, Brazil," Energies, MDPI, vol. 13(20), pages 1-26, October.
    12. Philipp Kluschke & Fabian Neumann, 2019. "Interaction of a Hydrogen Refueling Station Network for Heavy-Duty Vehicles and the Power System in Germany for 2050," Papers 1908.10119, arXiv.org.
    13. Shi, Jie & Gao, H. Oliver, 2022. "Efficient energy management of wireless charging roads with energy storage for coupled transportation–power systems," Applied Energy, Elsevier, vol. 323(C).
    14. Mohammadreza Gholikhani & Seyed Amid Tahami & Mohammadreza Khalili & Samer Dessouky, 2019. "Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    15. Schwerdfeger, Stefan & Bock, Stefan & Boysen, Nils & Briskorn, Dirk, 2022. "Optimizing the electrification of roads with charge-while-drive technology," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1111-1127.
    16. Wang, Hui & Han, Jiaying & Su, Min & Wan, Shulin & Zhang, Zhenchao, 2021. "The relationship between freight transport and economic development: A case study of China," Research in Transportation Economics, Elsevier, vol. 85(C).
    17. Piya Kerdlap & Aloisius Rabata Purnama & Jonathan Sze Choong Low & Daren Zong Loong Tan & Claire Y. Barlow & Seeram Ramakrishna, 2023. "Life cycle cost analysis of distributed versus centralized plastic sorting and recycling," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 297-311, February.
    18. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    19. Teixeira, Ana Carolina Rodrigues & Machado, Pedro Gerber & Borges, Raquel Rocha & Mouette, Dominique, 2020. "Public policies to implement alternative fuels in the road transport sector," Transport Policy, Elsevier, vol. 99(C), pages 345-361.
    20. Shamala Gadgil & Karthikeyan Ekambaram & Huw Davies & Andrew Jones & Stewart Birrell, 2022. "Determining the Social, Economic, Political and Technical Factors Significant to the Success of Dynamic Wireless Charging Systems through a Process of Stakeholder Engagement," Energies, MDPI, vol. 15(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4217-:d:1151683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.