IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v99y2020icp345-361.html
   My bibliography  Save this article

Public policies to implement alternative fuels in the road transport sector

Author

Listed:
  • Teixeira, Ana Carolina Rodrigues
  • Machado, Pedro Gerber
  • Borges, Raquel Rocha
  • Mouette, Dominique

Abstract

Over the last century, several public policies and programs focusing on the transport sector have been implemented, contributing to changes in the way fuels are consumed in the world. This paper aims to analyze the effects of public policies on fuel prices and consumption through a review of the legislation and a historical analysis from 1920 to 2019 of the political and economic contexts regarding different fuels. In order to do so, this paper uses Brazil as a case study. From combining historical fuel prices/consumption data and the policies implemented, it was possible to empirically identify the key policies that supported the increase of alternative fuels consumption. The results showed that most of the sanctioned legislation related to fuels regards taxes to control prices in the market, fuel production and commercialization. Besides, many of them were created for immediate situations to fit a specific need, not addressing important global environmental issues and disregarded any long-term planning. It is also concluded that there is a preference for developing and subsidizing business-as-usual fuels that could provide energy security over more environmentally friendly options.

Suggested Citation

  • Teixeira, Ana Carolina Rodrigues & Machado, Pedro Gerber & Borges, Raquel Rocha & Mouette, Dominique, 2020. "Public policies to implement alternative fuels in the road transport sector," Transport Policy, Elsevier, vol. 99(C), pages 345-361.
  • Handle: RePEc:eee:trapol:v:99:y:2020:i:c:p:345-361
    DOI: 10.1016/j.tranpol.2020.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X20301852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2020.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jenn, Alan & Azevedo, Inês L. & Ferreira, Pedro, 2013. "The impact of federal incentives on the adoption of hybrid electric vehicles in the United States," Energy Economics, Elsevier, vol. 40(C), pages 936-942.
    2. Chen, Bo & Saghaian, Sayed, 2015. "The Relationship among Ethanol, Sugar and Oil Prices in Brazil: Cointegration Analysis with Structural Breaks," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196788, Southern Agricultural Economics Association.
    3. Rudolph, Christian, 2016. "How may incentives for electric cars affect purchase decisions?," Transport Policy, Elsevier, vol. 52(C), pages 113-120.
    4. Nocera, Silvio & Cavallaro, Federico, 2016. "The competitiveness of alternative transport fuels for CO2 emissions," Transport Policy, Elsevier, vol. 50(C), pages 1-14.
    5. Leung, Abraham & Burke, Matthew & Perl, Anthony & Cui, Jianqiang, 2018. "The peak oil and oil vulnerability discourse in urban transport policy: A comparative discourse analysis of Hong Kong and Brisbane," Transport Policy, Elsevier, vol. 65(C), pages 5-18.
    6. Noel, Lance & Sovacool, Benjamin K., 2016. "Why Did Better Place Fail?: Range anxiety, interpretive flexibility, and electric vehicle promotion in Denmark and Israel," Energy Policy, Elsevier, vol. 94(C), pages 377-386.
    7. Olsson, Linda & Hjalmarsson, Linnea & Wikström, Martina & Larsson, Mårten, 2015. "Bridging the implementation gap: Combining backcasting and policy analysis to study renewable energy in urban road transport," Transport Policy, Elsevier, vol. 37(C), pages 72-82.
    8. Roberto Marx & Adriana Marotti De Mello, 2014. "New initiatives, trends and dilemmas for the Brazilian automotive industry: the case of Inovar Auto and its impacts on electromobility in Brazil," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 14(2), pages 138-157.
    9. Narayan, Seema & Bhattacharya, Poulomi, 2019. "Relative export competitiveness of agricultural commodities and its determinants: Some evidence from India," World Development, Elsevier, vol. 117(C), pages 29-47.
    10. Goldman, Todd & Gorham, Roger, 2006. "Sustainable urban transport: Four innovative directions," Technology in Society, Elsevier, vol. 28(1), pages 261-273.
    11. Moreira, Jose R. & Goldemberg, Jose, 1999. "The alcohol program," Energy Policy, Elsevier, vol. 27(4), pages 229-245, April.
    12. Held, Tobias & Gerrits, Lasse, 2019. "On the road to electrification – A qualitative comparative analysis of urban e-mobility policies in 15 European cities," Transport Policy, Elsevier, vol. 81(C), pages 12-23.
    13. Zhang, Lei & Qin, Quande, 2018. "China’s new energy vehicle policies: Evolution, comparison and recommendation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 57-72.
    14. Leal, Fernando I. & Rego, Erik E. & de Oliveira Ribeiro, Celma, 2019. "Natural gas regulation and policy in Brazil: Prospects for the market expansion and energy integration in Mercosul," Energy Policy, Elsevier, vol. 128(C), pages 817-829.
    15. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi, 2016. "Natural gas as vehicle fuel in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 521-533.
    16. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2015. "Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in a renewable-based energy system," Energy, Elsevier, vol. 83(C), pages 614-627.
    17. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, October.
    18. Ülengin, Füsun & Işık, Mine & Ekici, Şule Önsel & Özaydın, Özay & Kabak, Özgür & Topçu, Y. İlker, 2018. "Policy developments for the reduction of climate change impacts by the transportation sector," Transport Policy, Elsevier, vol. 61(C), pages 36-50.
    19. Hountalas, D.T. & Mavropoulos, G.C. & Binder, K.B., 2008. "Effect of exhaust gas recirculation (EGR) temperature for various EGR rates on heavy duty DI diesel engine performance and emissions," Energy, Elsevier, vol. 33(2), pages 272-283.
    20. Verschaeren, Roel & Schaepdryver, Wouter & Serruys, Thomas & Bastiaen, Marc & Vervaeke, Lieven & Verhelst, Sebastian, 2014. "Experimental study of NOx reduction on a medium speed heavy duty diesel engine by the application of EGR (exhaust gas recirculation) and Miller timing," Energy, Elsevier, vol. 76(C), pages 614-621.
    21. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, October.
    22. Plötz, Patrick & Gnann, Till & Jochem, Patrick & Yilmaz, Hasan Ümitcan & Kaschub, Thomas, 2019. "Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions," Energy Policy, Elsevier, vol. 130(C), pages 32-40.
    23. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    24. Masiero, Gilmar & Ogasavara, Mario Henrique & Jussani, Ailton Conde & Risso, Marcelo Luiz, 2017. "The global value chain of electric vehicles: A review of the Japanese, South Korean and Brazilian cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 290-296.
    25. Muhammad Qasim & Tariq Mahmood Ansari & Mazhar Hussain, 2017. "Combustion, Performance, and Emission Evaluation of a Diesel Engine with Biodiesel Like Fuel Blends Derived From a Mixture of Pakistani Waste Canola and Waste Transformer Oils," Energies, MDPI, vol. 10(7), pages 1-16, July.
    26. Andersson, Linda & Ek, Kristina & Kastensson, Åsa & Wårell, Linda, 2020. "Transition towards sustainable transportation – What determines fuel choice?," Transport Policy, Elsevier, vol. 90(C), pages 31-38.
    27. Fontoura, Wlisses Bonelá & Chaves, Gisele de Lorena Diniz & Ribeiro, Glaydston Mattos, 2019. "The Brazilian urban mobility policy: The impact in São Paulo transport system using system dynamics," Transport Policy, Elsevier, vol. 73(C), pages 51-61.
    28. Osorio-Tejada, Jose Luis & Llera-Sastresa, Eva & Scarpellini, Sabina, 2017. "Liquefied natural gas: Could it be a reliable option for road freight transport in the EU?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 785-795.
    29. Kamimura, Arlindo & Sauer, Ildo L., 2008. "The effect of flex fuel vehicles in the Brazilian light road transportation," Energy Policy, Elsevier, vol. 36(4), pages 1574-1576, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flávia Mendes de Almeida Collaço & Ana Carolina Rodrigues Teixeira & Pedro Gerber Machado & Raquel Rocha Borges & Thiago Luis Felipe Brito & Dominique Mouette, 2022. "Road Freight Transport Literature and the Achievements of the Sustainable Development Goals—A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    2. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    3. Contestabile, Marcello & Alajaji, Mohammed & Almubarak, Bader, 2017. "Will current electric vehicle policy lead to cost-effective electrification of passenger car transport?," Energy Policy, Elsevier, vol. 110(C), pages 20-30.
    4. Zimm, Caroline, 2021. "Improving the understanding of electric vehicle technology and policy diffusion across countries," Transport Policy, Elsevier, vol. 105(C), pages 54-66.
    5. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    6. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    7. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    8. Tilmann Rave, 2013. "Innovationsindikatoren zum globalen Klimaschutz – FuE-Ausgaben und Patente," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    9. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    10. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    11. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    12. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    13. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    14. Li, Yating & Fei, Yinxin & Zhang, Xiao-Bing & Qin, Ping, 2019. "Household appliance ownership and income inequality: Evidence from micro data in China," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    15. Xiaolun Wang & Xinlin Yao, 2020. "Fueling Pro-Environmental Behaviors with Gamification Design: Identifying Key Elements in Ant Forest with the Kano Model," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    16. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    17. He, Gang & Victor, David G., 2017. "Experiences and lessons from China’s success in providing electricity for all," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 335-338.
    18. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    19. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    20. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:99:y:2020:i:c:p:345-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.