IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i4p1574-1576.html
   My bibliography  Save this article

The effect of flex fuel vehicles in the Brazilian light road transportation

Author

Listed:
  • Kamimura, Arlindo
  • Sauer, Ildo L.

Abstract

The retaking of the ethanol program in the year 2003 as a fuel for light road transportation in Brazil through the introduction of flex fuel vehicles fleet was a good strategy to overcome the difficulties of the ethanol production sector and did work to increase its market share relative to gasoline. This process, however, may cause a future disequilibrium on the food production and on the refining oil derivates structure. In order to analyze the substitution process resultant of the competition between two opponents fighting for the same market, in this case the gasoline/ethanol substitution process, a method derived from the biomathematics based on the non-linear differential equations (NLDE) system is utilized. A brief description of the method is presented. Numerical adherence of the method to explain several substitution phenomena that occurred in the past is presented in the previous author's paper, in which the urban gas pipeline system substitution of bottled LPG in the dwelling sector and the substitution of the urban diesel transportation fleet by compressed natural gas (CNG) buses is presented. The proposed method is particularly suitable for prospective analysis and scenarios assessment.

Suggested Citation

  • Kamimura, Arlindo & Sauer, Ildo L., 2008. "The effect of flex fuel vehicles in the Brazilian light road transportation," Energy Policy, Elsevier, vol. 36(4), pages 1574-1576, April.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:4:p:1574-1576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00013-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamimura, A. & Guerra, S.M.G. & Sauer, I.L., 2006. "On the substitution of energy sources: Prospective of the natural gas market share in the Brazilian urban transportation and dwelling sectors," Energy Policy, Elsevier, vol. 34(18), pages 3583-3590, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rico, Julieta A. Puerto & Mercedes, Sonia S.P. & Sauer, Ildo L., 2010. "Genesis and consolidation of the Brazilian bioethanol: A review of policies and incentive mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1874-1887, September.
    2. Thiago B. Murari & Aloisio S. Nascimento Filho & Eder J.A.L. Pereira & Paulo Ferreira & Sergio Pitombo & Hernane B.B. Pereira & Alex A.B. Santos & Marcelo A. Moret, 2019. "Comparative Analysis between Hydrous Ethanol and Gasoline C Pricing in Brazilian Retail Market," Sustainability, MDPI, vol. 11(17), pages 1-12, August.
    3. Chollacoop, Nuwong & Saisirirat, Peerawat & Sukkasi, Sittha & Tongroon, Manida & Fukuda, Tuenjai & Fukuda, Atsushi & Nivitchanyong, Siriluck, 2013. "Potential of greenhouse gas emission reduction in Thai road transport by ethanol bus technology," Applied Energy, Elsevier, vol. 102(C), pages 112-123.
    4. Luis Rivera-González & David Bolonio & Luis F. Mazadiego & Sebastián Naranjo-Silva & Kenny Escobar-Segovia, 2020. "Long-Term Forecast of Energy and Fuels Demand Towards a Sustainable Road Transport Sector in Ecuador (2016–2035): A LEAP Model Application," Sustainability, MDPI, vol. 12(2), pages 1-26, January.
    5. de Carvalho, Joaquim F. & Sauer, Ildo L., 2009. "Does Brazil need new nuclear power plants?," Energy Policy, Elsevier, vol. 37(4), pages 1580-1584, April.
    6. Aloisio S. Nascimento Filho & Rafael G. O. dos Santos & João Gabriel A. Calmon & Peterson A. Lobato & Marcelo A. Moret & Thiago B. Murari & Hugo Saba, 2022. "Induction of a Consumption Pattern for Ethanol and Gasoline in Brazil," Sustainability, MDPI, vol. 14(15), pages 1-11, July.
    7. Teixeira, Ana Carolina Rodrigues & Machado, Pedro Gerber & Borges, Raquel Rocha & Mouette, Dominique, 2020. "Public policies to implement alternative fuels in the road transport sector," Transport Policy, Elsevier, vol. 99(C), pages 345-361.
    8. Pao, Hsiao-Tien & Chen, Haipeng (Allan) & Li, Yi-Ying, 2015. "Competitive dynamics of energy, environment, and economy in the U.S," Energy, Elsevier, vol. 89(C), pages 449-460.
    9. Pao, Hsiao-Tien & Fu, Hsin-Chia, 2015. "Competition and stability analyses among emissions, energy, and economy: Application for Mexico," Energy, Elsevier, vol. 82(C), pages 98-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun Chih Chen, 2021. "The path to a 2025 nuclear-free Taiwan: An analysis of dynamic competition among emissions, energy, and economy," Energy & Environment, , vol. 32(4), pages 668-689, June.
    2. Pao, Hsiao-Tien & Chen, Haipeng (Allan) & Li, Yi-Ying, 2015. "Competitive dynamics of energy, environment, and economy in the U.S," Energy, Elsevier, vol. 89(C), pages 449-460.
    3. Verdeil, Éric & Arik, Elvan & Bolzon, Hugo & Markoum, Jimmy, 2015. "Governing the transition to natural gas in Mediteranean Metropolis: The case of Cairo, Istanbul and Sfax (Tunisia)," Energy Policy, Elsevier, vol. 78(C), pages 235-245.
    4. Pao, Hsiao-Tien & Fu, Hsin-Chia, 2015. "Competition and stability analyses among emissions, energy, and economy: Application for Mexico," Energy, Elsevier, vol. 82(C), pages 98-107.
    5. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    6. Biresselioglu, Mehmet Efe & Yelkenci, Tezer, 2016. "Scrutinizing the causality relationships between prices, production and consumption of fossil fuels: A panel data approach," Energy, Elsevier, vol. 102(C), pages 44-53.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:4:p:1574-1576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.