IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v135y2024ics0140988324003463.html
   My bibliography  Save this article

Transition towards a hybrid energy system: Combined effects of renewable portfolio standards and carbon emission trading

Author

Listed:
  • Su, Q.
  • Zhou, P.
  • Ding, H.
  • Xydis, G.

Abstract

A hybrid energy system (HES) utilizing complementary energy sources allows for high-quality development of renewables. It is a viable pathway in achieving the low-carbon transition of the power sector. Both Renewable Portfolio Standards (RPS) and Carbon Emission Trading (CET) regulate the low-carbon behavior of conventional power enterprises. This highlights the importance of investigating how the policy mix can drive the transition towards hybrid power generation. This paper develops an evolutionary game between local governments and power enterprises to explore the influence of policy-related parameters on the transition to a hybrid energy system. We find that implementing the policy mix is imperative to the transition when the technology cost of a hybrid energy system is not competitive. Power enterprises can control investment costs through the structure of multi-energy power generation, but are also limited by the lack of renewable absorption capacity. We also find an additive effect between RPS and CET, albeit with differences. Raising the price of tradeable green power certificates (TGC) can effectively facilitate the transition under either a single RPS policy or the policy mix. Reducing initial carbon permits makes sense only under the policy mix. Moreover, the coordinated implementation of multiple policies can contribute to the transition more efficiently, but it deserves attention to avoiding policy redundancy.

Suggested Citation

  • Su, Q. & Zhou, P. & Ding, H. & Xydis, G., 2024. "Transition towards a hybrid energy system: Combined effects of renewable portfolio standards and carbon emission trading," Energy Economics, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:eneeco:v:135:y:2024:i:c:s0140988324003463
    DOI: 10.1016/j.eneco.2024.107638
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324003463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Sam & Siriwardana, Mahinda & McNeill, Judith & Nelson, Tim, 2018. "The impact of an ETS on the Australian energy sector: An integrated CGE and electricity modelling approach," Energy Economics, Elsevier, vol. 69(C), pages 213-224.
    2. Stein-Erik Fleten & Johannes Mauritzen & Carl J. Ullrich, 2018. "The Other Renewable: Hydropower Upgrades and Renewable Portfolio Standards," The Energy Journal, , vol. 39(2), pages 197-218, March.
    3. Bento, Antonio M. & Garg, Teevrat & Kaffine, Daniel, 2018. "Emissions reductions or green booms? General equilibrium effects of a renewable portfolio standard," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 78-100.
    4. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    5. Delarue, Erik & Van den Bergh, Kenneth, 2016. "Carbon mitigation in the electric power sector under cap-and-trade and renewables policies," Energy Policy, Elsevier, vol. 92(C), pages 34-44.
    6. Yan, Yue & Sun, Mei & Guo, Zhilong, 2022. "How do carbon cap-and-trade mechanisms and renewable portfolio standards affect renewable energy investment?," Energy Policy, Elsevier, vol. 165(C).
    7. Jarke-Neuert, Johannes & Perino, Grischa, 2020. "Energy efficiency promotion backfires under cap-and-trade," Resource and Energy Economics, Elsevier, vol. 62(C).
    8. Rachel Feldman & Arik Levinson, 2023. "Renewable Portfolio Standards," The Energy Journal, , vol. 44(5), pages 1-20, September.
    9. Feng, Tian-tian & Yang, Yi-sheng & Yang, Yu-heng, 2018. "What will happen to the power supply structure and CO2 emissions reduction when TGC meets CET in the electricity market in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 121-132.
    10. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    11. Cai, Gangshu & Kock, Ned, 2009. "An evolutionary game theoretic perspective on e-collaboration: The collaboration effort and media relativeness," European Journal of Operational Research, Elsevier, vol. 194(3), pages 821-833, May.
    12. Tsao, C.-C. & Campbell, J.E. & Chen, Yihsu, 2011. "When renewable portfolio standards meet cap-and-trade regulations in the electricity sector: Market interactions, profits implications, and policy redundancy," Energy Policy, Elsevier, vol. 39(7), pages 3966-3974, July.
    13. Friedman, Daniel, 1991. "Evolutionary Games in Economics," Econometrica, Econometric Society, vol. 59(3), pages 637-666, May.
    14. Szolgayova, Jana & Fuss, Sabine & Obersteiner, Michael, 2008. "Assessing the effects of CO2 price caps on electricity investments--A real options analysis," Energy Policy, Elsevier, vol. 36(10), pages 3974-3981, October.
    15. Deschenes, Olivier & Malloy, Christopher & McDonald, Gavin, 2023. "Causal effects of Renewable Portfolio Standards on renewable investments and generation: The role of heterogeneity and dynamics," Resource and Energy Economics, Elsevier, vol. 75(C).
    16. Yi, Bo-Wen & Xu, Jin-Hua & Fan, Ying, 2019. "Coordination of policy goals between renewable portfolio standards and carbon caps: A quantitative assessment in China," Applied Energy, Elsevier, vol. 237(C), pages 25-35.
    17. Mu, Yunfei & Chen, Wanqing & Yu, Xiaodan & Jia, Hongjie & Hou, Kai & Wang, Congshan & Meng, Xianjun, 2020. "A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies," Applied Energy, Elsevier, vol. 279(C).
    18. Hosseini-Motlagh, Seyyed-Mahdi & Choi, Tsan-Ming & Johari, Maryam & Nouri-Harzvili, Mina, 2022. "A profit surplus distribution mechanism for supply chain coordination: An evolutionary game-theoretic analysis," European Journal of Operational Research, Elsevier, vol. 301(2), pages 561-575.
    19. Yi, Yuyin & Yang, Haishen, 2017. "Wholesale pricing and evolutionary stable strategies of retailers under network externality," European Journal of Operational Research, Elsevier, vol. 259(1), pages 37-47.
    20. Rachel Feldman and Arik Levinson, 2023. "Renewable Portfolio Standards," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    21. Schmidt, Tobias S. & Battke, Benedikt & Grosspietsch, David & Hoffmann, Volker H., 2016. "Do deployment policies pick technologies by (not) picking applications?—A simulation of investment decisions in technologies with multiple applications," Research Policy, Elsevier, vol. 45(10), pages 1965-1983.
    22. Tang, Songlin & Zhou, Wenbing & Li, Xinjin & Chen, Yingchao & Zhang, Qian & Zhang, Xiliang, 2021. "Subsidy strategy for distributed photovoltaics: A combined view of cost change and economic development," Energy Economics, Elsevier, vol. 97(C).
    23. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2023. "Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    24. Johari, Maryam & Hosseini-Motlagh, Seyyed-Mahdi, 2022. "Evolutionary behaviors regarding pricing and payment-convenience strategies with uncertain risk," European Journal of Operational Research, Elsevier, vol. 297(2), pages 600-614.
    25. Gerard Llobet and Jorge Padilla, 2018. "Conventional Power Plants in Liberalized Electricity Markets with Renewable Entry," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    26. Sanya Carley & Lincoln L. Davies & David B. Spence & Nikolaos Zirogiannis, 2018. "Empirical evaluation of the stringency and design of renewable portfolio standards," Nature Energy, Nature, vol. 3(9), pages 754-763, September.
    27. Huang, Lingyun & Zou, Yanjun, 2020. "How to promote energy transition in China: From the perspectives of interregional relocation and environmental regulation," Energy Economics, Elsevier, vol. 92(C).
    28. Ding, Hao & Zhou, Dequn & Zhou, P., 2020. "Optimal policy supports for renewable energy technology development: A dynamic programming model," Energy Economics, Elsevier, vol. 92(C).
    29. Aleh Cherp & Vadim Vinichenko & Jale Tosun & Joel A. Gordon & Jessica Jewell, 2021. "National growth dynamics of wind and solar power compared to the growth required for global climate targets," Nature Energy, Nature, vol. 6(7), pages 742-754, July.
    30. Encarnação, Sara & Santos, Fernando P. & Santos, Francisco C. & Blass, Vered & Pacheco, Jorge M. & Portugali, Juval, 2018. "Paths to the adoption of electric vehicles: An evolutionary game theoretical approach," Transportation Research Part B: Methodological, Elsevier, vol. 113(C), pages 24-33.
    31. Maryam Esmaeili & Ghazaleh Allameh & Taraneh Tajvidi, 2016. "Using game theory for analysing pricing models in closed-loop supply chain from short- and long-term perspectives," International Journal of Production Research, Taylor & Francis Journals, vol. 54(7), pages 2152-2169, April.
    32. Mo, Jian-Lei & Agnolucci, Paolo & Jiang, Mao-Rong & Fan, Ying, 2016. "The impact of Chinese carbon emission trading scheme (ETS) on low carbon energy (LCE) investment," Energy Policy, Elsevier, vol. 89(C), pages 271-283.
    33. Wen, Wen & Zhou, P. & Zhang, Fuqiang, 2018. "Carbon emissions abatement: Emissions trading vs consumer awareness," Energy Economics, Elsevier, vol. 76(C), pages 34-47.
    34. Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.
    35. Boomsma, Trine Krogh & Meade, Nigel & Fleten, Stein-Erik, 2012. "Renewable energy investments under different support schemes: A real options approach," European Journal of Operational Research, Elsevier, vol. 220(1), pages 225-237.
    36. Roach, Martin & Meeus, Leonardo, 2023. "An energy system model to study the impact of combining carbon pricing with direct support for renewable gases," Ecological Economics, Elsevier, vol. 210(C).
    37. Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    38. Xiao, Tiaojun & Yu, Gang, 2006. "Supply chain disruption management and evolutionarily stable strategies of retailers in the quantity-setting duopoly situation with homogeneous goods," European Journal of Operational Research, Elsevier, vol. 173(2), pages 648-668, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xianyang & Zhou, Dequn & Ding, Hao & Zhao, Siqi & Wang, Qunwei, 2023. "Low-carbon transition of China's provincial power sector under renewable portfolio standards and carbon cap," Energy, Elsevier, vol. 283(C).
    2. Zhao, Tian & Liu, Zhixin & Jamasb, Tooraj, 2022. "Developing hydrogen refueling stations: An evolutionary game approach and the case of China," Energy Economics, Elsevier, vol. 115(C).
    3. Dong, Zhuojia & Yu, Xianyu & Chang, Ching-Ter & Zhou, Dequn & Sang, Xiuzhi, 2022. "How does feed-in tariff and renewable portfolio standard evolve synergistically? An integrated approach of tripartite evolutionary game and system dynamics," Renewable Energy, Elsevier, vol. 186(C), pages 864-877.
    4. Wang, Delu & Li, Chunxiao & Mao, Jinqi & Yang, Qing, 2023. "What affects the implementation of the renewable portfolio standard? An analysis of the four-party evolutionary game," Renewable Energy, Elsevier, vol. 204(C), pages 250-261.
    5. Ying, Zhou & Xin-gang, Zhao & Lei, Xu, 2022. "Supply side incentive under the Renewable Portfolio Standards: A perspective of China," Renewable Energy, Elsevier, vol. 193(C), pages 505-518.
    6. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Ding, Rui & Zhang, Zusheng, 2022. "Evolutionary dynamics of promoting electric vehicle-charging infrastructure based on public–private partnership cooperation," Energy, Elsevier, vol. 239(PD).
    7. Ying, Zhou & Xin-gang, Zhao, 2021. "The impact of Renewable Portfolio Standards on carbon emission trading under the background of China’s electricity marketization reform," Energy, Elsevier, vol. 226(C).
    8. Song, Xiaohua & Wang, Peng, 2023. "Effectiveness of carbon emissions trading and renewable energy portfolio standards in the Chinese provincial and coupled electricity markets," Utilities Policy, Elsevier, vol. 84(C).
    9. Xu, Jie & Lv, Tao & Hou, Xiaoran & Deng, Xu & Liu, Feng, 2021. "Provincial allocation of renewable portfolio standard in China based on efficiency and fairness principles," Renewable Energy, Elsevier, vol. 179(C), pages 1233-1245.
    10. Tan, Bing Qing & Kang, Kai & Zhong, Ray Y., 2023. "Electric vehicle charging infrastructure investment strategy analysis: State-owned versus private parking lots," Transport Policy, Elsevier, vol. 141(C), pages 54-71.
    11. Silveira, Douglas & Vasconcelos, Silvinha, 2020. "Essays on duopoly competition with asymmetric firms: Is profit maximization always an evolutionary stable strategy?," International Journal of Production Economics, Elsevier, vol. 225(C).
    12. Zhu, Chaoping & Fan, Ruguo & Lin, Jinchai, 2020. "The impact of renewable portfolio standard on retail electricity market: A system dynamics model of tripartite evolutionary game," Energy Policy, Elsevier, vol. 136(C).
    13. Zhao, Dan & Ji, Shou-feng & Wang, He-ping & Jiang, Li-wen, 2021. "How do government subsidies promote new energy vehicle diffusion in the complex network context? A three-stage evolutionary game model," Energy, Elsevier, vol. 230(C).
    14. Hosseini-Motlagh, Seyyed-Mahdi & Choi, Tsan-Ming & Johari, Maryam & Nouri-Harzvili, Mina, 2022. "A profit surplus distribution mechanism for supply chain coordination: An evolutionary game-theoretic analysis," European Journal of Operational Research, Elsevier, vol. 301(2), pages 561-575.
    15. Wang, Ge & Zhang, Qi & Li, Yan & Mclellan, Benjamin C. & Pan, Xunzhang, 2019. "Corrective regulations on renewable energy certificates trading: Pursuing an equity-efficiency trade-off," Energy Economics, Elsevier, vol. 80(C), pages 970-982.
    16. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2024. "Mutual conversion mechanisms for environmental interest products to jointly enhance synergistic effect between power, CET and TGC markets in China," Energy Economics, Elsevier, vol. 131(C).
    17. Gu, Wei & Wei, Lirong & Zhang, Wenqing & Yan, Xiangbin, 2019. "Evolutionary game analysis of cooperation between natural resource- and energy-intensive companies in reverse logistics operations," International Journal of Production Economics, Elsevier, vol. 218(C), pages 159-169.
    18. Ziang Liu & Tatsushi Nishi, 2019. "Government Regulations on Closed-Loop Supply Chain with Evolutionarily Stable Strategy," Sustainability, MDPI, vol. 11(18), pages 1-29, September.
    19. Wanting Chen & Zhi-Hua Hu, 2020. "Analysis of Multi-Stakeholders’ Behavioral Strategies Considering Public Participation under Carbon Taxes and Subsidies: An Evolutionary Game Approach," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
    20. Fan, Jing-Li & Wang, Jia-Xing & Hu, Jia-Wei & Yang, Yang & Wang, Yu, 2021. "Will China achieve its renewable portfolio standard targets? An analysis from the perspective of supply and demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:135:y:2024:i:c:s0140988324003463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.