IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v108y2022ics0140988322001086.html
   My bibliography  Save this article

Productivity drain or productivity gain? The effect of new technology adoption in the oilfield market

Author

Listed:
  • Zhang, Qizheng
  • Qian, Zesen
  • Wang, Shuo
  • Yuan, Lingran
  • Gong, Binlei

Abstract

This article aims to investigate the changing effects of new technology adoption on productivity convergence among oilfield service companies in the context of the shale technical revolution. A club convergence test is utilized to evaluate the competitiveness of each firm with and without new technologies, followed by a productivity catch-up model to identify the effect of new technology utilization over time. Using an unbalanced panel data of 114 major oilfield service companies worldwide from 1997 to 2014, the empirical results show that all firms with shale technologies are converging to the frontier. Increased utilization of shale technologies caused productivity drains when they were first invented, but then led to productivity gains when the technology became more sophisticated. Furthermore, productivity convergence was witnessed during the sample period.

Suggested Citation

  • Zhang, Qizheng & Qian, Zesen & Wang, Shuo & Yuan, Lingran & Gong, Binlei, 2022. "Productivity drain or productivity gain? The effect of new technology adoption in the oilfield market," Energy Economics, Elsevier, vol. 108(C).
  • Handle: RePEc:eee:eneeco:v:108:y:2022:i:c:s0140988322001086
    DOI: 10.1016/j.eneco.2022.105930
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322001086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.105930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter R. Hartley & Kenneth B. Medlock III, 2013. "Changes in the Operational Efficiency of National Oil Companies," The Energy Journal, , vol. 34(2), pages 27-58, April.
    2. Peter C. B. Phillips & Donggyu Sul, 2007. "Transition Modeling and Econometric Convergence Tests," Econometrica, Econometric Society, vol. 75(6), pages 1771-1855, November.
    3. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    4. Boothby, Daniel & Dufour, Anik & Tang, Jianmin, 2010. "Technology adoption, training and productivity performance," Research Policy, Elsevier, vol. 39(5), pages 650-661, June.
    5. Jinhyung Lee & Jeffrey S. McCullough & Robert J. Town, 2013. "The impact of health information technology on hospital productivity," RAND Journal of Economics, RAND Corporation, vol. 44(3), pages 545-568, September.
    6. Binlei Gong, 2020. "New Growth Accounting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 641-661, March.
    7. Stacy Eller & Peter Hartley & Kenneth Medlock, 2011. "Empirical evidence on the operational efficiency of National Oil Companies," Empirical Economics, Springer, vol. 40(3), pages 623-643, May.
    8. Luis Orea, Inmaculada C. Álvarez, and Tooraj Jamasb, 2018. "A Spatial Stochastic Frontier Model with Omitted Variables: Electricity Distribution in Norway," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    9. Gale A. Boyd, 2008. "Estimating Plant Level Energy Efficiency with a Stochastic Frontier," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 23-44.
    10. Galor, Oded, 1996. "Convergence? Inferences from Theoretical Models," Economic Journal, Royal Economic Society, vol. 106(437), pages 1056-1069, July.
    11. Kopsakangas-Savolainen, Maria & Svento, Rauli, 2011. "Observed and unobserved heterogeneity in stochastic frontier models: An application to the electricity distribution industry," Energy Economics, Elsevier, vol. 33(2), pages 304-310, March.
    12. Federico Belotti & Silvio Daidone & Giuseppe Ilardi & Vincenzo Atella, 2013. "Stochastic frontier analysis using Stata," Stata Journal, StataCorp LP, vol. 13(4), pages 718-758, December.
    13. Manuel Llorca & Jose Banos & Somoza Jose & Pelayo Arbues, 2017. "A Stochastic Frontier Analysis Approach for Estimating Energy Demand and Efficiency in the Transport Sector of Latin America and the Caribbean," The Energy Journal, , vol. 38(5), pages 153-174, September.
    14. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    15. Rachel Griffith & Elena Huergo & Jacques Mairesse & Bettina Peters, 2006. "Innovation and Productivity Across Four European Countries," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 22(4), pages 483-498, Winter.
    16. Chevalier, Paul-Antoine & Lecat, Rémy & Oulton, Nicholas, 2012. "Convergence of firm-level productivity, globalisation and information technology: Evidence from France," Economics Letters, Elsevier, vol. 116(2), pages 244-246.
    17. Bournakis, Ioannis & Mallick, Sushanta, 2018. "TFP estimation at firm level: The fiscal aspect of productivity convergence in the UK," Economic Modelling, Elsevier, vol. 70(C), pages 579-590.
    18. Peter C. B. Phillips & Donggyu Sul, 2009. "Economic transition and growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1153-1185.
    19. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    20. Chen, Shuai & Gong, Binlei, 2021. "Response and adaptation of agriculture to climate change: Evidence from China," Journal of Development Economics, Elsevier, vol. 148(C).
    21. Berlemann Michael & Wesselhöft Jan-Erik, 2014. "Estimating Aggregate Capital Stocks Using the Perpetual Inventory Method: A Survey of Previous Implementations and New Empirical Evidence for 103 Countries," Review of Economics, De Gruyter, vol. 65(1), pages 1-34, April.
    22. James Bessen, 2002. "Technology Adoption Costs and Productivity Growth: The Transition to Information Technology," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 5(2), pages 443-469, April.
    23. Binlei Gong & Robin C. Sickles, 2021. "Resource allocation in multi-divisional multi-product firms," Journal of Productivity Analysis, Springer, vol. 55(2), pages 47-70, April.
    24. Eric Bartelsman & John Haltiwanger & Stefano Scarpetta, 2013. "Cross-Country Differences in Productivity: The Role of Allocation and Selection," American Economic Review, American Economic Association, vol. 103(1), pages 305-334, February.
    25. Robin C. Sickles & Mary L. Streitwieser, 1998. "An analysis of technology, productivity, and regulatory distortion in the interstate natural gas transmission industry: 1977-1985," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(4), pages 377-395.
    26. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    27. Geroski, P A, 1991. "Innovation and the Sectoral," Economic Journal, Royal Economic Society, vol. 101(409), pages 1438-1451, November.
    28. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    29. Cette, Gilbert & Corde, Simon & Lecat, Rémy, 2018. "Firm-level productivity dispersion and convergence," Economics Letters, Elsevier, vol. 166(C), pages 76-78.
    30. Hartley, Peter & Medlock III, Kenneth B., 2008. "A model of the operation and development of a National Oil Company," Energy Economics, Elsevier, vol. 30(5), pages 2459-2485, September.
    31. Fisman, Raymond & Svensson, Jakob, 2007. "Are corruption and taxation really harmful to growth? Firm level evidence," Journal of Development Economics, Elsevier, vol. 83(1), pages 63-75, May.
    32. Bartolucci, Francesco & Belotti, Federico & Peracchi, Franco, 2015. "Testing for time-invariant unobserved heterogeneity in generalized linear models for panel data," Journal of Econometrics, Elsevier, vol. 184(1), pages 111-123.
    33. Gong, Binlei, 2018. "Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978–2015," Journal of Development Economics, Elsevier, vol. 132(C), pages 18-31.
    34. Binlei Gong, 2020. "Effects of Ownership and Business Portfolio on Production in the Oil and Gas Industry," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    35. Binlei Gong & Robin C. Sickles, 2020. "Non-structural and structural models in productivity analysis: study of the British Isles during the 2007–2009 financial crisis," Journal of Productivity Analysis, Springer, vol. 53(2), pages 243-263, April.
    36. Fuentelsaz, Lucio & Gómez, Jaime & Palomas, Sergio, 2009. "The effects of new technologies on productivity: An intrafirm diffusion-based assessment," Research Policy, Elsevier, vol. 38(7), pages 1172-1180, September.
    37. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    38. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    39. Parisi, Maria Laura & Schiantarelli, Fabio & Sembenelli, Alessandro, 2006. "Productivity, innovation and R&D: Micro evidence for Italy," European Economic Review, Elsevier, vol. 50(8), pages 2037-2061, November.
    40. Daniel A. Ackerberg & Kevin Caves & Garth Frazer, 2015. "Identification Properties of Recent Production Function Estimators," Econometrica, Econometric Society, vol. 83, pages 2411-2451, November.
    41. Ioannis Bournakis, 2012. "Sources of TFP growth in a framework of convergence-evidence from Greece," International Review of Applied Economics, Taylor & Francis Journals, vol. 26(1), pages 47-72, January.
    42. Zesen Qian & Lingran Yuan & Shuo Wang & Qizheng Zhang & Binlei Gong, 2021. "Epidemics, Convergence, and Common Prosperity: Evidence from China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 29(6), pages 117-138, November.
    43. Songqing Jin & Hengyun Ma & Jikun Huang & Ruifa Hu & Scott Rozelle, 2010. "Productivity, efficiency and technical change: measuring the performance of China’s transforming agriculture," Journal of Productivity Analysis, Springer, vol. 33(3), pages 191-207, June.
    44. Konrad Lyncker & Rasmus Thoennessen, 2017. "Regional club convergence in the EU: evidence from a panel data analysis," Empirical Economics, Springer, vol. 52(2), pages 525-553, March.
    45. Subal C. Kumbhakar & Gudbrand Lien, 2017. "Yardstick Regulation of Electricity Distribution Disentangling Short-run and Long-run Inefficiencies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    46. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    47. Bernard, Andrew B & Jones, Charles I, 1996. "Comparing Apples to Oranges: Productivity Convergence and Measurement across Industries and Countries," American Economic Review, American Economic Association, vol. 86(5), pages 1216-1238, December.
    48. Shurui Zhang & Shuo Wang & Lingran Yuan & Xiaoguang Liu & Binlei Gong, 2020. "The impact of epidemics on agricultural production and forecast of COVID-19," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 12(3), pages 409-425, July.
    49. Binlei Gong, 2019. "Like father like son? Revisiting the role of parental education in estimating returns to education in China," Review of Development Economics, Wiley Blackwell, vol. 23(1), pages 275-292, February.
    50. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    51. Gong, Binlei, 2020. "Agricultural productivity convergence in China," China Economic Review, Elsevier, vol. 60(C).
    52. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    53. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    54. Lingran Yuan & Shurui Zhang & Shuo Wang & Zesen Qian & Binlei Gong, 2021. "World agricultural convergence," Journal of Productivity Analysis, Springer, vol. 55(2), pages 135-153, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingran Yuan & Shurui Zhang & Shuo Wang & Zesen Qian & Binlei Gong, 2021. "World agricultural convergence," Journal of Productivity Analysis, Springer, vol. 55(2), pages 135-153, April.
    2. Gong, Binlei, 2020. "Measuring and Achieving World Agricultural Convergence," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304347, Agricultural and Applied Economics Association.
    3. Binlei Gong & Robin C. Sickles, 2021. "Resource allocation in multi-divisional multi-product firms," Journal of Productivity Analysis, Springer, vol. 55(2), pages 47-70, April.
    4. Binlei Gong & Robin C. Sickles, 2020. "Non-structural and structural models in productivity analysis: study of the British Isles during the 2007–2009 financial crisis," Journal of Productivity Analysis, Springer, vol. 53(2), pages 243-263, April.
    5. Gong, Binlei, 2018. "Different behaviors in natural gas production between national and private oil companies: Economics-driven or environment-driven?," Energy Policy, Elsevier, vol. 114(C), pages 145-152.
    6. Yuan, Lingran & Zhang, Qizheng & Wang, Shuo & Hu, Weibin & Gong, Binlei, 2022. "Effects of international trade on world agricultural production and productivity: evidence from a panel of 126 countries 1962-2014," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 25(2), March.
    7. Gong, Binlei, 2020. "Agricultural productivity convergence in China," China Economic Review, Elsevier, vol. 60(C).
    8. Gong, Binlei, 2018. "Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978–2015," Journal of Development Economics, Elsevier, vol. 132(C), pages 18-31.
    9. Huynh, Linh & Hoang, Hien, 2021. "Technical Efficiency and Total Factor Productivity Changes in Manufacturing Industries: Recent Advancements in Stochastic Frontier Model Approach," MPRA Paper 117621, University Library of Munich, Germany, revised 2022.
    10. Zesen Qian & Lingran Yuan & Shuo Wang & Qizheng Zhang & Binlei Gong, 2021. "Epidemics, Convergence, and Common Prosperity: Evidence from China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 29(6), pages 117-138, November.
    11. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C. & Weyman-Jones, Thomas, 2018. "The Spatial Efficiency Multiplier and Common Correlated Effects in a Spatial Autoregressive Stochastic Frontier Model," Working Papers 18-003, Rice University, Department of Economics.
    12. Binlei Gong, 2020. "New Growth Accounting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 641-661, March.
    13. Martini, Gianmaria & Scotti, Davide & Viola, Domenico & Vittadini, Giorgio, 2020. "Persistent and temporary inefficiency in airport cost function: An application to Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 999-1019.
    14. Kutlu, Levent & Tran, Kien C. & Tsionas, Mike G., 2019. "A time-varying true individual effects model with endogenous regressors," Journal of Econometrics, Elsevier, vol. 211(2), pages 539-559.
    15. Pontus Mattsson & Jonas Månsson & William H. Greene, 2020. "TFP change and its components for Swedish manufacturing firms during the 2008–2009 financial crisis," Journal of Productivity Analysis, Springer, vol. 53(1), pages 79-93, February.
    16. Gong, Binlei, 2020. "Multi-dimensional interactions in the oilfield market: A jackknife model averaging approach of spatial productivity analysis," Energy Economics, Elsevier, vol. 86(C).
    17. Massimo Del Gatto & Adriana Di Liberto & Carmelo Petraglia, 2011. "Measuring Productivity," Journal of Economic Surveys, Wiley Blackwell, vol. 25(5), pages 952-1008, December.
    18. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    19. Hailu, Kidanemariam Berhe & Tanaka, Makoto, 2015. "A “true” random effects stochastic frontier analysis for technical efficiency and heterogeneity: Evidence from manufacturing firms in Ethiopia," Economic Modelling, Elsevier, vol. 50(C), pages 179-192.
    20. Levent Kutlu & Shasha Liu & Robin C. Sickles, 2022. "Cost, Revenue, and Profit Function Estimates," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 16, pages 641-679, Springer.

    More about this item

    Keywords

    New technology adoption; Shale technical revolution; Oilfield market; Productivity convergence; Stochastic frontier analysis;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:108:y:2022:i:c:s0140988322001086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.