IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v239y2014i1p237-242.html
   My bibliography  Save this article

Measuring the impacts of production risk on technical efficiency: A state-contingent conditional order-m approach

Author

Listed:
  • Serra, Teresa
  • Oude Lansink, Alfons

Abstract

This article studies the influence of risk on farms’ technical efficiency levels. The analysis extends the order-m efficiency scores approach proposed by Daraio and Simar (2005) to the state-contingent framework. The empirical application focuses on cross section data of Catalan specialized crop farms from the year 2011. Results suggest that accounting for production risks increases the technical performance. A 10% increase in output risk will result in a 2.5% increase in average firm technical performance.

Suggested Citation

  • Serra, Teresa & Oude Lansink, Alfons, 2014. "Measuring the impacts of production risk on technical efficiency: A state-contingent conditional order-m approach," European Journal of Operational Research, Elsevier, vol. 239(1), pages 237-242.
  • Handle: RePEc:eee:ejores:v:239:y:2014:i:1:p:237-242
    DOI: 10.1016/j.ejor.2014.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714004275
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. John Quiggin & Robert G. Chambers, 2006. "The state-contingent approach to production under uncertainty ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(2), pages 153-169, June.
    2. Richard H. Day, 1965. "Probability Distributions of Field Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 47(3), pages 713-741.
    3. Christopher O’Donnell & Robert Chambers & John Quiggin, 2010. "Efficiency analysis in the presence of uncertainty," Journal of Productivity Analysis, Springer, vol. 33(1), pages 1-17, February.
    4. Robert G. Chambers & Atakelty Hailu & John Quiggin, 2011. "Event‐specific data envelopment models and efficiency analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 90-106, January.
    5. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    6. Teresa Serra & David Zilberman & José M. Gil, 2008. "Differential uncertainties and risk attitudes between conventional and organic producers: the case of Spanish arable crop farmers," Agricultural Economics, International Association of Agricultural Economists, vol. 39(2), pages 219-229, September.
    7. List, John A. & Shogren, Jason F., 1998. "Calibration of the difference between actual and hypothetical valuations in a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 37(2), pages 193-205, October.
    8. Jayson L. Lusk, 2003. "Effects of Cheap Talk on Consumer Willingness-to-Pay for Golden Rice," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 840-856.
    9. Bar-Shira, Z. & Just, R. E. & Zilberman, D., 1997. "Estimation of farmers' risk attitude: an econometric approach," Agricultural Economics, Blackwell, vol. 17(2-3), pages 211-222, December.
    10. Robert G. Chambers & John Quiggin, 2002. "The State-Contingent Properties of Stochastic Production Functions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(2), pages 513-526.
    11. Saha, Atanu, 1997. "Risk Preference Estimation in the Nonlinear Mean Standard Deviation Approach," Economic Inquiry, Western Economic Association International, vol. 35(4), pages 770-782, October.
    12. Serra, Teresa & Chambers, Robert G. & Oude Lansink, Alfons, 2014. "Measuring technical and environmental efficiency in a state-contingent technology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 706-717.
    13. Laura O. Taylor & Ronald G. Cummings, 1999. "Unbiased Value Estimates for Environmental Goods: A Cheap Talk Design for the Contingent Valuation Method," American Economic Review, American Economic Association, vol. 89(3), pages 649-665, June.
    14. Joseph Yassour & David Zilberman & Gordon C. Rausser, 1981. "Optimal Choices among Alternative Technologies with Stochastic Yield," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 63(4), pages 718-723.
    15. David A. Hennessy, 1998. "The Production Effects of Agricultural Income Support Policies under Uncertainty," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 46-57.
    16. Robert G. Chambers & John Quiggin, 1998. "Cost Functions and Duality for Stochastic Technologies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(2), pages 288-295.
    17. G. Battese & A. Rambaldi & G. Wan, 1997. "A Stochastic Frontier Production Function with Flexible Risk Properties," Journal of Productivity Analysis, Springer, vol. 8(3), pages 269-280, August.
    18. Cinzia Daraio & Léopold Simar, 2005. "Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach," Journal of Productivity Analysis, Springer, vol. 24(1), pages 93-121, September.
    19. Henry Tulkens, 1993. "On FDH efficiency analysis: Some methodological issues and applications to retail banking, courts, and urban transit," Journal of Productivity Analysis, Springer, vol. 4(1), pages 183-210, June.
    20. Just, Richard E. & Pope, Rulon D., 1978. "Stochastic specification of production functions and economic implications," Journal of Econometrics, Elsevier, vol. 7(1), pages 67-86, February.
    21. Chambers,Robert G. & Quiggin,John, 2000. "Uncertainty, Production, Choice, and Agency," Cambridge Books, Cambridge University Press, number 9780521622448, April.
    22. Hung-Jen Wang, 2002. "Heteroscedasticity and Non-Monotonic Efficiency Effects of a Stochastic Frontier Model," Journal of Productivity Analysis, Springer, vol. 18(3), pages 241-253, November.
    23. Jean-Paul Chavas & Robert G. Chambers & Rulon D. Pope, 2010. "Production Economics and Farm Management: a Century of Contributions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(2), pages 356-375.
    24. Skevas, Theodoros & Lansink, Alfons Oude & Stefanou, Spiro E., 2012. "Measuring technical efficiency in the presence of pesticide spillovers and production uncertainty: The case of Dutch arable farms," European Journal of Operational Research, Elsevier, vol. 223(2), pages 550-559.
    25. Teresa Serra & David Zilberman & Barry K. Goodwin & Allen Featherstone, 2006. "Effects of decoupling on the mean and variability of output," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 33(3), pages 269-288, September.
    26. Wayne A. Fuller, 1965. "Stochastic Fertilizer Production Functions for Continuous Corn," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 47(1), pages 105-119.
    27. Subal C. Kumbhakar, 2002. "Specification and Estimation of Production Risk, Risk Preferences and Technical Efficiency," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(1), pages 8-22.
    28. Antle, John M, 1983. "Testing the Stochastic Structure of Production: A Flexible Moment-based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(3), pages 192-201, July.
    29. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    30. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    31. John M. Antle, 1989. "Nonstructural Risk Attitude Estimation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(3), pages 774-784.
    32. Jean-Paul Chavas & Matthew T. Holt, 1990. "Acreage Decisions Under Risk: The Case of Corn and Soybeans," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(3), pages 529-538.
    33. John A. List, 2001. "Do Explicit Warnings Eliminate the Hypothetical Bias in Elicitation Procedures? Evidence from Field Auctions for Sportscards," American Economic Review, American Economic Association, vol. 91(5), pages 1498-1507, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean Joseph Minviel & Kristof De Witte, 2016. "The influence of public subsidies on farm technical efficiency: A robust conditional nonparametric approach," Working Papers SMART - LERECO 16-10, INRA UMR SMART-LERECO.
    2. Minviel, Jean Joseph & De Witte, Kristof, 2017. "The influence of public subsidies on farm technical efficiency: A robust conditional nonparametric approach," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1112-1120.
    3. Luiza Badin & Cinzia Daraio & Léopold Simar, 2018. "A Bootstrap Approach for Bandwidth Selection in Estimating Conditional Efficiency Measures," DIAG Technical Reports 2018-02, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    4. Yin, Pengzhen & Sun, Jiasen & Chu, Junfei & Liang, Liang, 2016. "Evaluating the environmental efficiency of a two-stage system with undesired outputs by a DEA approach: An interest preference perspectiveAuthor-Name: Wu, Jie," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1047-1062.
    5. Tzeremes, Nickolaos G., 2015. "Efficiency dynamics in Indian banking: A conditional directional distance approach," European Journal of Operational Research, Elsevier, vol. 240(3), pages 807-818.
    6. Alghalith, Moawia, 2016. "A note on the theory of the firm under multiple uncertainties," European Journal of Operational Research, Elsevier, vol. 251(1), pages 341-343.
    7. Baležentis, Tomas & De Witte, Kristof, 2015. "One- and multi-directional conditional efficiency measurement – Efficiency in Lithuanian family farms," European Journal of Operational Research, Elsevier, vol. 245(2), pages 612-622.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:239:y:2014:i:1:p:237-242. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.