IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v212y2019i1p47-77.html
   My bibliography  Save this article

Commercial and Residential Mortgage Defaults: Spatial Dependence with Frailty

Author

Listed:
  • Babii, Andrii
  • Chen, Xi
  • Ghysels, Eric

Abstract

We investigate the spatial dependence between commercial and residential mortgage defaults. A new class of observation-driven frailty factor models is introduced to do so. The idea of dynamic parameters embedded in the class of GAS models is utilized to estimate dynamic models of default risk with potentially multiple factors which are driven by stratified grouping of large panels of mortgage loan records. The score dynamics in the models is driven by so-called generalized residuals, and have therefore a fairly intuitive interpretation of ARMA-like dynamics. The asymptotic analysis recognizes the fact that we deal with both cross-sectional and time series data features. The proposed models are computationally easy to implement and therefore attractive in big data applications, something that gives them a considerable advantage in comparison to the typical latent factor frailty models proposed in the literature. Our empirical analysis demonstrates strong spatial dependence between commercial default and residential defaults.

Suggested Citation

  • Babii, Andrii & Chen, Xi & Ghysels, Eric, 2019. "Commercial and Residential Mortgage Defaults: Spatial Dependence with Frailty," Journal of Econometrics, Elsevier, vol. 212(1), pages 47-77.
  • Handle: RePEc:eee:econom:v:212:y:2019:i:1:p:47-77
    DOI: 10.1016/j.jeconom.2019.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407619300752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2019.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Drew Creal & Bernd Schwaab & Siem Jan Koopman & Andr� Lucas, 2014. "Observation-Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 898-915, December.
    2. Darrell Duffie & Andreas Eckner & Guillaume Horel & Leandro Saita, 2009. "Frailty Correlated Default," Journal of Finance, American Finance Association, vol. 64(5), pages 2089-2123, October.
    3. Benjamin M.A. & Rigby R.A. & Stasinopoulos D.M., 2003. "Generalized Autoregressive Moving Average Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 214-223, January.
    4. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    5. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    6. Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2016. "Spillover dynamics for systemic risk measurement using spatial financial time series models," Journal of Econometrics, Elsevier, vol. 195(2), pages 211-223.
    7. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    8. Pierce, David A. & Haugh, Larry D., 1977. "Causality in temporal systems : Characterization and a survey," Journal of Econometrics, Elsevier, vol. 5(3), pages 265-293, May.
    9. Larry D. Haugh & David A. Pierce, 1977. "Causality in temporal systems: characterizations and a survey," Special Studies Papers 87, Board of Governors of the Federal Reserve System (U.S.).
    10. Olivier Wintenberger, 2013. "Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
    11. Follain, James R. & Ondrich, Jan & Sinha, Gyan P., 1997. "Ruthless Prepayment? Evidence from Multifamily Mortgages," Journal of Urban Economics, Elsevier, vol. 41(1), pages 78-101, January.
    12. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    13. Yongheng Deng & Andrey D. Pavlov & Lihong Yang, 2005. "Spatial Heterogeneity in Mortgage Terminations by Refinance, Sale and Default," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 33(4), pages 739-764, December.
    14. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    15. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    16. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    17. Tomohiro Ando & Jushan Bai, 2016. "Panel Data Models with Grouped Factor Structure Under Unknown Group Membership," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 163-191, January.
    18. James Kau & Donald Keenan & Xiaowei Li, 2011. "An Analysis of Mortgage Termination Risks: A Shared Frailty Approach with MSA-Level Random Effects," The Journal of Real Estate Finance and Economics, Springer, vol. 42(1), pages 51-67, January.
    19. Elena Andreou & Patrick Gagliardini & Eric Ghysels & Mirco Rubin, 2016. "Is Industrial Production Still the Dominant Factor for the US Economy?," Swiss Finance Institute Research Paper Series 16-11, Swiss Finance Institute.
    20. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
    21. Sanjiv R. Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2007. "Common Failings: How Corporate Defaults Are Correlated," Journal of Finance, American Finance Association, vol. 62(1), pages 93-117, February.
    22. Neil Shephard, 1995. "Generalized linear autoregressions," Economics Papers 8., Economics Group, Nuffield College, University of Oxford.
    23. Gourieroux, Christian & Monfort, Alain & Renault, Eric & Trognon, Alain, 1987. "Generalised residuals," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 5-32.
    24. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    25. Paul D. Feigin & Richard L. Tweedie, 1985. "Random Coefficient Autoregressive Processes:A Markov Chain Analysis Of Stationarity And Finiteness Of Moments," Journal of Time Series Analysis, Wiley Blackwell, vol. 6(1), pages 1-14, January.
    26. Ledyard Tucker, 1958. "An inter-battery method of factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(2), pages 111-136, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    2. Luca Barbaglia & Sebastiano Manzan & Elisa Tosetti, 2023. "Forecasting Loan Default in Europe with Machine Learning," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 569-596.
    3. Medina-Olivares, Victor & Calabrese, Raffaella & Dong, Yizhe & Shi, Baofeng, 2022. "Spatial dependence in microfinance credit default," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1071-1085.
    4. Telg, Sean & Dubinova, Anna & Lucas, Andre, 2023. "Covid-19, credit risk management modeling, and government support," Journal of Banking & Finance, Elsevier, vol. 147(C).
    5. Anna Dubinova & Andre Lucas & Sean Telg, 2021. "COVID-19, Credit Risk and Macro Fundamentals," Tinbergen Institute Discussion Papers 21-059/III, Tinbergen Institute.
    6. Eric A. Beutner & Yicong Lin & Andre Lucas, 2023. "Consistency, distributional convergence, and optimality of score-driven filters," Tinbergen Institute Discussion Papers 23-051/III, Tinbergen Institute.
    7. Giuseppe Orlando & Michele Bufalo, 2021. "Empirical Evidences on the Interconnectedness between Sampling and Asset Returns’ Distributions," Risks, MDPI, vol. 9(5), pages 1-35, May.
    8. Pascal Kundig & Fabio Sigrist, 2024. "A Spatio-Temporal Machine Learning Model for Mortgage Credit Risk: Default Probabilities and Loan Portfolios," Papers 2410.02846, arXiv.org.
    9. Enzo D'Innocenzo & André Lucas & Anne Opschoor & Xingmin Zhang, 2024. "Heterogeneity and dynamics in network models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 150-173, January.
    10. Lu, Yunzhi & Li, Jie & Yang, Haisheng, 2021. "Time-varying inter-urban housing price spillovers in China: Causes and consequences," Journal of Asian Economics, Elsevier, vol. 77(C).
    11. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ha Nguyen, 2023. "Particle MCMC in forecasting frailty correlated default models with expert opinion," Papers 2304.11586, arXiv.org, revised Aug 2023.
    2. Anand Deo & Sandeep Juneja, 2021. "Credit Risk: Simple Closed-Form Approximate Maximum Likelihood Estimator," Operations Research, INFORMS, vol. 69(2), pages 361-379, March.
    3. Nguyen, Ha, 2023. "An empirical application of Particle Markov Chain Monte Carlo to frailty correlated default models," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 103-121.
    4. Anand Deo & Sandeep Juneja, 2019. "Credit Risk: Simple Closed Form Approximate Maximum Likelihood Estimator," Papers 1912.12611, arXiv.org.
    5. Asis, Gonzalo & Chari, Anusha & Haas, Adam, 2021. "In search of distress risk in emerging markets," Journal of International Economics, Elsevier, vol. 131(C).
    6. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    7. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    8. Mark Clintworth & Dimitrios Lyridis & Evangelos Boulougouris, 2023. "Financial risk assessment in shipping: a holistic machine learning based methodology," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 90-121, March.
    9. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
    10. Qi, Min & Zhang, Xiaofei & Zhao, Xinlei, 2014. "Unobserved systematic risk factor and default prediction," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 216-227.
    11. Deniz Anginer & Çelim Yıldızhan, 2018. "Is There a Distress Risk Anomaly? Pricing of Systematic Default Risk in the Cross-section of Equity Returns [The risk-adjusted cost of financial distress]," Review of Finance, European Finance Association, vol. 22(2), pages 633-660.
    12. Chan, Steven & Han, Gaofeng & Zhang, Wenlang, 2016. "How strong are the linkages between real estate and other sectors in China?," Research in International Business and Finance, Elsevier, vol. 36(C), pages 52-72.
    13. Duan, Jin-Chuan & Sun, Jie & Wang, Tao, 2012. "Multiperiod corporate default prediction—A forward intensity approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 191-209.
    14. Lars Schweizer & Andreas Nienhaus, 2017. "Corporate distress and turnaround: integrating the literature and directing future research," Business Research, Springer;German Academic Association for Business Research, vol. 10(1), pages 3-47, June.
    15. Ruey-Ching Hwang & Huimin Chung & Jiun-Yi Ku, 2013. "Predicting Recurrent Financial Distresses with Autocorrelation Structure: An Empirical Analysis from an Emerging Market," Journal of Financial Services Research, Springer;Western Finance Association, vol. 43(3), pages 321-341, June.
    16. Wenlang Zhang & Gaofeng Han & Steven Chan, 2014. "How Strong are the Linkages between Real Estate and Other Sectors in China?," Working Papers 112014, Hong Kong Institute for Monetary Research.
    17. Lando, David & Nielsen, Mads Stenbo, 2010. "Correlation in corporate defaults: Contagion or conditional independence?," Journal of Financial Intermediation, Elsevier, vol. 19(3), pages 355-372, July.
    18. Hwang, Ruey-Ching, 2012. "A varying-coefficient default model," International Journal of Forecasting, Elsevier, vol. 28(3), pages 675-688.
    19. Blasques, F. & Gorgi, P. & Koopman, S.J., 2021. "Missing observations in observation-driven time series models," Journal of Econometrics, Elsevier, vol. 221(2), pages 542-568.
    20. Katarina Valaskova & Tomas Kliestik & Lucia Svabova & Peter Adamko, 2018. "Financial Risk Measurement and Prediction Modelling for Sustainable Development of Business Entities Using Regression Analysis," Sustainability, MDPI, vol. 10(7), pages 1-15, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:212:y:2019:i:1:p:47-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.