IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Predicting Recurrent Financial Distresses with Autocorrelation Structure: An Empirical Analysis from an Emerging Market

Listed author(s):
  • Ruey-Ching Hwang

    ()

  • Huimin Chung
  • Jiun-Yi Ku
Registered author(s):

    The dynamic logit model (DLM) with autocorrelation structure (Liang and Zeger Biometrika 73:13–22, 1986 ) is proposed as a model for predicting recurrent financial distresses. This model has been applied in many examples to analyze repeated binary data due to its simplicity in computation and formulation. We illustrate the proposed model using three different panel datasets of Taiwan industrial firms. These datasets are based on the well-known predictors in Altman (J Financ 23:589–609, 1968 ), Campbell et al. (J Financ 62:2899–2939, 2008 ), and Shumway (J Bus 74:101–124, 2001 ). To account for the correlations among the observations from the same firm, we consider two different autocorrelation structures: exchangeable and first-order autoregressive (AR1). The prediction models including the DLM with independent structure, the DLM with exchangeable structure, and the DLM with AR1 structure are separately applied to each of these datasets. Using an expanding rolling window approach, the empirical results show that for each of the three datasets, the DLM with AR1 structure yields the most accurate firm-by-firm financial-distress probabilities in out-of-sample analysis among the three models. Thus, it is a useful alternative for studying credit losses in portfolios. Copyright Springer Science+Business Media, LLC 2013

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s10693-012-0136-0
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer & Western Finance Association in its journal Journal of Financial Services Research.

    Volume (Year): 43 (2013)
    Issue (Month): 3 (June)
    Pages: 321-341

    as
    in new window

    Handle: RePEc:kap:jfsres:v:43:y:2013:i:3:p:321-341
    DOI: 10.1007/s10693-012-0136-0
    Contact details of provider: Web page: http://www.springer.com

    Web page: http://westernfinance.org/

    More information through EDIRC

    Order Information: Web: http://www.springer.com/journal/10693

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    2. Darrell Duffie & Andreas Eckner & Guillaume Horel & Leandro Saita, 2009. "Frailty Correlated Default," Journal of Finance, American Finance Association, vol. 64(5), pages 2089-2123, October.
    3. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    4. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    5. Ruey-Ching Hwang & Jhao-Siang Siao & Huimin Chung & C. Chu, 2011. "Assessing bankruptcy prediction models via information content of technical inefficiency," Journal of Productivity Analysis, Springer, vol. 36(3), pages 263-273, December.
    6. Dragon Tang & Hong Yan, 2006. "Macroeconomic Conditions, Firm Characteristics, and Credit Spreads," Journal of Financial Services Research, Springer;Western Finance Association, vol. 29(3), pages 177-210, June.
    7. Li, Ming-Yuan Leon & Miu, Peter, 2010. "A hybrid bankruptcy prediction model with dynamic loadings on accounting-ratio-based and market-based information: A binary quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 818-833, September.
    8. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    9. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    10. repec:bla:joares:v:18:y:1980:i:1:p:109-131 is not listed on IDEAS
    11. repec:bla:joares:v:22:y:1984:i::p:59-82 is not listed on IDEAS
    12. Vicente Salas & Jesús Saurina, 2002. "Credit Risk in Two Institutional Regimes: Spanish Commercial and Savings Banks," Journal of Financial Services Research, Springer;Western Finance Association, vol. 22(3), pages 203-224, December.
    13. Sudheer Chava & Catalina Stefanescu & Stuart Turnbull, 2011. "Modeling the Loss Distribution," Management Science, INFORMS, vol. 57(7), pages 1267-1287, July.
    14. Maria Vassalou & Yuhang Xing, 2004. "Default Risk in Equity Returns," Journal of Finance, American Finance Association, vol. 59(2), pages 831-868, April.
    15. K. F. Cheng & C. K. Chu & Ruey-Ching Hwang, 2010. "Predicting bankruptcy using the discrete-time semiparametric hazard model," Quantitative Finance, Taylor & Francis Journals, vol. 10(9), pages 1055-1066.
    16. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    17. Dennis Glennon & Peter Nigro, 2005. "An Analysis of SBA Loan Defaults by Maturity Structure," Journal of Financial Services Research, Springer;Western Finance Association, vol. 28(1), pages 77-111, October.
    18. Stefano Caselli & Stefano Gatti & Francesca Querci, 2008. "The Sensitivity of the Loss Given Default Rate to Systematic Risk: New Empirical Evidence on Bank Loans," Journal of Financial Services Research, Springer;Western Finance Association, vol. 34(1), pages 1-34, August.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:kap:jfsres:v:43:y:2013:i:3:p:321-341. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.