IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v162y2011i2p345-361.html
   My bibliography  Save this article

Bayesian inference in a correlated random coefficients model: Modeling causal effect heterogeneity with an application to heterogeneous returns to schooling

Author

Listed:
  • Li, Mingliang
  • Tobias, Justin L.

Abstract

We consider the problem of causal effect heterogeneity from a Bayesian point of view. This is accomplished by introducing a three-equation system, similar in spirit to the work of Heckman and Vytlacil (1998), describing the joint determination of a scalar outcome, an endogenous "treatment" variable, and an individual-specific causal return to that treatment. We describe a Bayesian posterior simulator for fitting this model which recovers far more than the average causal effect in the population, the object which has been the focus of most previous work. Parameter identification and generalized methods for flexibly modeling the outcome and return heterogeneity distributions are also discussed. Combining data sets from High School and Beyond (HSB) and the 1980 Census, we illustrate our methods in practice and investigate heterogeneity in returns to education. Our analysis decomposes the impact of key HSB covariates on log wages into three parts: a "direct" effect and two separate indirect effects through educational attainment and returns to education. Our results strongly suggest that the quantity of schooling attained is determined, at least in part, by the individual's own return to education. Specifically, a one percentage point increase in the return to schooling parameter is associated with the receipt of (approximately)Â 0.14 more years of schooling. Furthermore, when we control for variation in returns to education across individuals, we find no difference in predicted schooling levels for men and women. However, women are predicted to attain approximately 1/4 of a year more schooling than men on average as a result of higher rates of return to investments in education.

Suggested Citation

  • Li, Mingliang & Tobias, Justin L., 2011. "Bayesian inference in a correlated random coefficients model: Modeling causal effect heterogeneity with an application to heterogeneous returns to schooling," Journal of Econometrics, Elsevier, vol. 162(2), pages 345-361, June.
  • Handle: RePEc:eee:econom:v:162:y:2011:i:2:p:345-361
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(11)00033-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoogerheide, Lennart & Kleibergen, Frank & van Dijk, Herman K., 2007. "Natural conjugate priors for the instrumental variables regression model applied to the Angrist-Krueger data," Journal of Econometrics, Elsevier, vol. 138(1), pages 63-103, May.
    2. Poirier, Dale J & Tobias, Justin L, 2003. "On the Predictive Distributions of Outcome Gains in the Presence of an Unidentified Parameter," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(2), pages 258-268, April.
    3. John Geweke, 2004. "Getting It Right: Joint Distribution Tests of Posterior Simulators," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 799-804, January.
    4. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    5. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
    6. Wooldridge, Jeffrey M., 2003. "Further results on instrumental variables estimation of average treatment effects in the correlated random coefficient model," Economics Letters, Elsevier, vol. 79(2), pages 185-191, May.
    7. Grogger, Jeff, 1996. "School Expenditures and Post-schooling Earnings: Evidence from High School and Beyond," The Review of Economics and Statistics, MIT Press, vol. 78(4), pages 628-637, November.
    8. Mingliang Li & Dale J. Poirier & Justin L. Tobias, 2004. "Do dropouts suffer from dropping out? Estimation and prediction of outcome gains in generalized selection models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 203-225.
    9. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    10. Henderson, Daniel J. & Polachek, Solomon W. & Wang, Le, 2011. "Heterogeneity in schooling rates of return," Economics of Education Review, Elsevier, vol. 30(6), pages 1202-1214.
    11. Ganderton, Philip T., 1992. "The effect of subsidies in kind on the choice of a college," Journal of Public Economics, Elsevier, vol. 48(3), pages 269-292, August.
    12. Koop, Gary M & Tobias, Justin, 2004. "Learning About Heterogeneity in Returns to Schooling," Staff General Research Papers Archive 12008, Iowa State University, Department of Economics.
    13. Geweke, John & Keane, Michael, 2007. "Smoothly mixing regressions," Journal of Econometrics, Elsevier, vol. 138(1), pages 252-290, May.
    14. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    15. Eric A. Hanushek & Lori L. Taylor, 1990. "Alternative Assessments of the Performance of Schools: Measurement of State Variations in Achievement," Journal of Human Resources, University of Wisconsin Press, vol. 25(2), pages 179-201.
    16. Conley, Timothy G. & Hansen, Christian B. & McCulloch, Robert E. & Rossi, Peter E., 2008. "A semi-parametric Bayesian approach to the instrumental variable problem," Journal of Econometrics, Elsevier, vol. 144(1), pages 276-305, May.
    17. Chib, Siddhartha & Hamilton, Barton H., 2002. "Semiparametric Bayes analysis of longitudinal data treatment models," Journal of Econometrics, Elsevier, vol. 110(1), pages 67-89, September.
    18. James Heckman & Edward Vytlacil, 1998. "Instrumental Variables Methods for the Correlated Random Coefficient Model: Estimating the Average Rate of Return to Schooling When the Return is Correlated with Schooling," Journal of Human Resources, University of Wisconsin Press, vol. 33(4), pages 974-987.
    19. Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2007. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9780521671736, June.
    20. Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
    21. Munkin, Murat K. & Trivedi, Pravin K., 2003. "Bayesian analysis of a self-selection model with multiple outcomes using simulation-based estimation: an application to the demand for healthcare," Journal of Econometrics, Elsevier, vol. 114(2), pages 197-220, June.
    22. Mingliang Li, 2006. "High school completion and future youth unemployment: new evidence from High School and Beyond," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 23-53.
    23. Partha Deb & Murat K. Munkin & Pravin K. Trivedi, 2006. "Bayesian analysis of the two‐part model with endogeneity: application to health care expenditure," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(7), pages 1081-1099, November.
    24. Koop, Gary & Poirier, Dale J., 1997. "Learning about the across-regime correlation in switching regression models," Journal of Econometrics, Elsevier, vol. 78(2), pages 217-227, June.
    25. Mingliang Li, 2007. "Bayesian Proportional Hazard Analysis of the Timing of High School Dropout Decisions," Econometric Reviews, Taylor & Francis Journals, vol. 26(5), pages 529-556.
    26. Chib, Siddhartha, 2007. "Analysis of treatment response data without the joint distribution of potential outcomes," Journal of Econometrics, Elsevier, vol. 140(2), pages 401-412, October.
    27. Chan,Joshua & Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2019. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9781108437493, September.
    28. John Geweke, 1999. "Using Simulation Methods for Bayesian Econometric Models," Computing in Economics and Finance 1999 832, Society for Computational Economics.
    29. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    30. Chib, Siddhartha & Hamilton, Barton H., 2000. "Bayesian analysis of cross-section and clustered data treatment models," Journal of Econometrics, Elsevier, vol. 97(1), pages 25-50, July.
    31. Grogger, Jeff, 1996. "Does School Quality Explain the Recent Black/White Wage Trend?," Journal of Labor Economics, University of Chicago Press, vol. 14(2), pages 231-253, April.
    32. Wooldridge, Jeffrey M., 1997. "On two stage least squares estimation of the average treatment effect in a random coefficient model," Economics Letters, Elsevier, vol. 56(2), pages 129-133, October.
    33. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    34. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    35. James Heckman, 1997. "Instrumental Variables: A Study of Implicit Behavioral Assumptions Used in Making Program Evaluations," Journal of Human Resources, University of Wisconsin Press, vol. 32(3), pages 441-462.
    36. Kai, Li, 1998. "Bayesian inference in a simultaneous equation model with limited dependent variables," Journal of Econometrics, Elsevier, vol. 85(2), pages 387-400, August.
    37. Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruochen Wu & Melvyn Weeks, 2020. "A Semi-Parametric Bayesian Generalized Least Squares Estimator," Papers 2011.10252, arXiv.org, revised Jan 2023.
    2. Mohitosh Kejriwal & Xiaoxiao Li & Evan Totty, 2020. "Multidimensional skills and the returns to schooling: Evidence from an interactive fixed‐effects approach and a linked survey‐administrative data set," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 548-566, August.
    3. Mohitosh Kejriwal & Xiaoxiao Li & Evan Totty, 2019. "Multidemsional Skills and Returns to Schooling: Evidence from an Interactive Fixed Effects Aproach and a Linked Survey-Administrative Dataset," Purdue University Economics Working Papers 1316, Purdue University, Department of Economics.
    4. Mintz, Ofer & Gilbride, Timothy J. & Lenk, Peter & Currim, Imran S., 2021. "The right metrics for marketing-mix decisions," International Journal of Research in Marketing, Elsevier, vol. 38(1), pages 32-49.
    5. Mateusz Pipien & Sylwia Roszkowska, 2015. "Returns to skills in Europe – same or different? The empirical importance of the systems of regressions approach," NBP Working Papers 226, Narodowy Bank Polski.
    6. Liana Jacobi & Helga Wagner & Sylvia Frühwirth-Schnatter, 2014. "Bayesian Treatment Effects Models with Variable Selection for Panel Outcomes with an Application to Earnings Effects of Maternity Leave," NRN working papers 2014-12, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.
    7. Jacobi, Liana & Wagner, Helga & Frühwirth-Schnatter, Sylvia, 2016. "Bayesian treatment effects models with variable selection for panel outcomes with an application to earnings effects of maternity leave," Journal of Econometrics, Elsevier, vol. 193(1), pages 234-250.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belzil, Christian & Hansen, Jörgen, 2005. "A Structural Analysis of the Correlated Random Coefficient Wage Regression Model with an Application to the OLS-IV Puzzle," IZA Discussion Papers 1585, Institute of Labor Economics (IZA).
    2. Aakvik, Arild & Salvanes, Kjell G. & Vaage, Kjell, 2003. "Measuring Heterogeneity in the Returns to Education in Norway Using Educational Reforms," IZA Discussion Papers 815, Institute of Labor Economics (IZA).
    3. Klein, Tobias J., 2010. "Heterogeneous treatment effects: Instrumental variables without monotonicity?," Journal of Econometrics, Elsevier, vol. 155(2), pages 99-116, April.
    4. Mingliang Li & Dale J. Poirier & Justin L. Tobias, 2004. "Do dropouts suffer from dropping out? Estimation and prediction of outcome gains in generalized selection models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 203-225.
    5. Jacobi, Liana & Wagner, Helga & Frühwirth-Schnatter, Sylvia, 2016. "Bayesian treatment effects models with variable selection for panel outcomes with an application to earnings effects of maternity leave," Journal of Econometrics, Elsevier, vol. 193(1), pages 234-250.
    6. Brendan Kline & Justin L. Tobias, 2008. "The wages of BMI: Bayesian analysis of a skewed treatment-response model with nonparametric endogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(6), pages 767-793.
    7. Belzil, Christian & Hansen, Jorgen, 2007. "A structural analysis of the correlated random coefficient wage regression model," Journal of Econometrics, Elsevier, vol. 140(2), pages 827-848, October.
    8. Joshua C. C. Chan & Justin L. Tobias, 2015. "Priors and Posterior Computation in Linear Endogenous Variable Models with Imperfect Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 650-674, June.
    9. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    10. Li, Mingliang, 2009. "Is there "white flight" into private schools? New evidence from High School and Beyond," Economics of Education Review, Elsevier, vol. 28(3), pages 382-392, June.
    11. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    12. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157.
    13. Maksym, Obrizan, 2010. "A Bayesian Model of Sample Selection with a Discrete Outcome Variable," MPRA Paper 28577, University Library of Munich, Germany.
    14. Justin Tobias, 2006. "Estimation, Learning and Parameters of Interest in a Multiple Outcome Selection Model," Econometric Reviews, Taylor & Francis Journals, vol. 25(1), pages 1-40.
    15. Mingliang Li, 2006. "High school completion and future youth unemployment: new evidence from High School and Beyond," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 23-53, January.
    16. Belzil, Christian & Hansen, Jorgen, 2007. "A structural analysis of the correlated random coefficient wage regression model," Journal of Econometrics, Elsevier, vol. 140(2), pages 827-848, October.
    17. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    18. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    19. Flossmann Anton L. & Pohlmeier Winfried, 2006. "Causal Returns to Education: A Survey on Empirical Evidence for Germany," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 226(1), pages 6-23, February.
    20. Murtazashvili, Irina & Wooldridge, Jeffrey M., 2008. "Fixed effects instrumental variables estimation in correlated random coefficient panel data models," Journal of Econometrics, Elsevier, vol. 142(1), pages 539-552, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:162:y:2011:i:2:p:345-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.