IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v205y2023ics0921800922003354.html
   My bibliography  Save this article

Digitalization, positioning in global value chain and carbon emissions embodied in exports: Evidence from global manufacturing production-based emissions

Author

Listed:
  • Huang, Yongming
  • Zhang, Yanan

Abstract

Digitalization and the emergence of global value chain (GVC) have been the two most significant changes affecting international trade in recent decades. This study examines the impact of digitalization and the position of GVC on carbon emissions embodied in exports (CEEE). In doing so, we use high-dimensional fixed-effect models and three-dimensional panel data covering 18 manufacturing industries in 38 economies from 2000 to 2014. The results show that digitalization and CEEE have an inverted U-shaped relationship, and upgrading GVC position can significantly reduce CEEE. Compared with developing countries, developed countries are prone to enter the downward phase of the inverted U-shaped curve through digitalization, thereby curbing CEEE. Similarly, high-tech industries enter the decline stage of the inverted U-shaped curve earlier than low-tech industries in digitalization process. In addition, improvements in GVC position in developed countries (or high-tech industries) have a greater impact on CEEE reduction than in developing countries (or low-tech industries). Finally, the results of nonlinear moderating effect model indicate that upgrading GVC's position flattens (or positively moderates) the inverted U-shaped curve and shifts the curve's turning point to the left. An important implication of our findings is that a country should actively raise its GVC position while focusing on digitalization for the goal of sustainable development.

Suggested Citation

  • Huang, Yongming & Zhang, Yanan, 2023. "Digitalization, positioning in global value chain and carbon emissions embodied in exports: Evidence from global manufacturing production-based emissions," Ecological Economics, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:ecolec:v:205:y:2023:i:c:s0921800922003354
    DOI: 10.1016/j.ecolecon.2022.107674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800922003354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2022.107674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Huizheng & Zong, Zhe & Hynes, Kate & De Bruyne, Karolien, 2020. "Can China reduce the carbon emissions of its manufacturing exports by moving up the global value chain?," Research in International Business and Finance, Elsevier, vol. 51(C).
    2. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    3. Messinis, George & Ahmed, Abdullahi D., 2013. "Cognitive skills, innovation and technology diffusion," Economic Modelling, Elsevier, vol. 30(C), pages 565-578.
    4. Sadorsky, Perry, 2012. "Information communication technology and electricity consumption in emerging economies," Energy Policy, Elsevier, vol. 48(C), pages 130-136.
    5. Jo Thori Lind & Halvor Mehlum, 2010. "With or Without U? The Appropriate Test for a U‐Shaped Relationship," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 109-118, February.
    6. Danish & Jianwu Zhang & Bo Wang & Zahid Latif, 2019. "Towards cross‐regional sustainable development: The nexus between information and communication technology, energy consumption, and CO2 emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 27(5), pages 990-1000, September.
    7. Zhi Wang & Shang-Jin Wei & Xinding Yu & Kunfu Zhu, 2017. "Characterizing Global Value Chains: Production Length and Upstreamness," NBER Working Papers 23261, National Bureau of Economic Research, Inc.
    8. Bastida, Leire & Cohen, Jed J. & Kollmann, Andrea & Moya, Ana & Reichl, Johannes, 2019. "Exploring the role of ICT on household behavioural energy efficiency to mitigate global warming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 455-462.
    9. Bogmans, Christian, 2015. "Can the terms of trade externality outweigh free-riding? The role of vertical linkages," Journal of International Economics, Elsevier, vol. 95(1), pages 115-128.
    10. Kouton, Jeffrey, 2019. "Information Communication Technology development and energy demand in African countries," Energy, Elsevier, vol. 189(C).
    11. Avom, Désiré & Nkengfack, Hilaire & Fotio, Hervé Kaffo & Totouom, Armand, 2020. "ICT and environmental quality in Sub-Saharan Africa: Effects and transmission channels," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    12. Alam, Md. Mahmudul & Murad, Md. Wahid, 2020. "The impacts of economic growth, trade openness and technological progress on renewable energy use in organization for economic co-operation and development countries," Renewable Energy, Elsevier, vol. 145(C), pages 382-390.
    13. Sun, Chuanwang & Li, Zhi & Ma, Tiemeng & He, Runyong, 2019. "Carbon efficiency and international specialization position: Evidence from global value chain position index of manufacture," Energy Policy, Elsevier, vol. 128(C), pages 235-242.
    14. Richard F. J. Haans & Constant Pieters & Zi-Lin He, 2016. "Thinking about U: Theorizing and testing U- and inverted U-shaped relationships in strategy research," Strategic Management Journal, Wiley Blackwell, vol. 37(7), pages 1177-1195, July.
    15. Ye, Chusheng & Ye, Qin & Shi, Xunpeng & Sun, Yongping, 2020. "Technology gap, global value chain and carbon intensity: Evidence from global manufacturing industries," Energy Policy, Elsevier, vol. 137(C).
    16. Dani Rodrik, 2018. "New Technologies, Global Value Chains, and the Developing Economies," CESifo Working Paper Series 7307, CESifo.
    17. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2019. "Institutional quality, green innovation and energy efficiency," Energy Policy, Elsevier, vol. 135(C).
    18. Huang, Yongming & Haseeb, Mohammad & Usman, Muhammad & Ozturk, Ilhan, 2022. "Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries?," Technology in Society, Elsevier, vol. 68(C).
    19. Naegele, Helene & Zaklan, Aleksandar, 2019. "Does the EU ETS cause carbon leakage in European manufacturing?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 93, pages 125-147.
    20. Hertwich, Edgar, 2020. "Carbon fueling complex global value chains tripled in the period 1995-2012," SocArXiv zb3rh, Center for Open Science.
    21. Wang, Jing & Wan, Guanghua & Wang, Chen, 2019. "Participation in GVCs and CO2 emissions," Energy Economics, Elsevier, vol. 84(C).
    22. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    23. Yan, Yunfeng & Wang, Ran & Zheng, Xiuxiu & Zhao, Zhongxiu, 2020. "Carbon endowment and trade-embodied carbon emissions in global value chains: Evidence from China," Applied Energy, Elsevier, vol. 277(C).
    24. Chen, Hanxue & Wang, Shuhong & Song, Malin, 2021. "Global Environmental Value Chain Embeddedness and Enterprise Production Efficiency Improvement," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 278-290.
    25. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    26. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    27. Hertwich, Edgar G., 2020. "Carbon fueling complex global value chains tripled in the period 1995–2012," Energy Economics, Elsevier, vol. 86(C).
    28. Ozcan, Burcu & Ozturk, Ilhan, 2019. "Renewable energy consumption-economic growth nexus in emerging countries: A bootstrap panel causality test," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 30-37.
    29. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    30. Meng, Bo & Peters, Glen P. & Wang, Zhi & Li, Meng, 2018. "Tracing CO2 emissions in global value chains," Energy Economics, Elsevier, vol. 73(C), pages 24-42.
    31. Gerard George & Ryan K. Merrill & Simon J. D. Schillebeeckx, 2021. "Digital Sustainability and Entrepreneurship: How Digital Innovations Are Helping Tackle Climate Change and Sustainable Development," Entrepreneurship Theory and Practice, , vol. 45(5), pages 999-1027, September.
    32. Niebel, Thomas, 2018. "ICT and economic growth – Comparing developing, emerging and developed countries," World Development, Elsevier, vol. 104(C), pages 197-211.
    33. Liu, Hongxun & Li, Jianglong & Long, Houyin & Li, Zhi & Le, Canyu, 2018. "Promoting energy and environmental efficiency within a positive feedback loop: Insights from global value chain," Energy Policy, Elsevier, vol. 121(C), pages 175-184.
    34. Robert Koopman & William Powers & Zhi Wang & Shang-Jin Wei, 2010. "Give Credit Where Credit Is Due: Tracing Value Added in Global Production Chains," NBER Working Papers 16426, National Bureau of Economic Research, Inc.
    35. Kearsley, Aaron & Riddel, Mary, 2010. "A further inquiry into the Pollution Haven Hypothesis and the Environmental Kuznets Curve," Ecological Economics, Elsevier, vol. 69(4), pages 905-919, February.
    36. Gouvea, Raul & Kapelianis, Dimitri & Kassicieh, Sul, 2018. "Assessing the nexus of sustainability and information & communications technology," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 39-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Hui & Li, Huiru, 2023. "How does the global metal industry value network affect industrial structure upgrading ? The perspective of industry chain," Resources Policy, Elsevier, vol. 85(PB).
    2. Wenqi Li & Qi Li & Ming Chen & Yutong Su & Jianhua Zhu, 2023. "Global Value Chains, Digital Economy, and Upgrading of China’s Manufacturing Industry," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    3. Yan, Yunfeng & Li, Xiyuan & Wang, Ran & Pan, An, 2023. "Global value chain and export-embodied carbon emissions: New evidence from foreign-invested enterprises," Economic Modelling, Elsevier, vol. 127(C).
    4. Essossinam Ali & Hodabalo Bataka & Kwami Ossadzifo Wonyra & Nadège Essossolim Awade & Nèmè Nalèwazou Braly, 2024. "Global value chains participation and environmental pollution in developing countries: Does digitalization matter?," Journal of International Development, John Wiley & Sons, Ltd., vol. 36(1), pages 451-478, January.
    5. Ren-Long Zhang & Xiao-Hong Liu & Wei-Bo Jiang, 2023. "How Does the Industrial Digitization Affect Carbon Emission Efficiency? Empirical Measurement Evidence from China’s Industry," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    6. Bai, Ling & Guo, Tianran & Xu, Wei & Liu, Yaobin & Kuang, Ming & Jiang, Lei, 2023. "Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model," Energy Policy, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jing & Rickman, Dan S. & Yu, Yihua, 2022. "Dynamics between global value chain participation, CO2 emissions, and economic growth: Evidence from a panel vector autoregression model," Energy Economics, Elsevier, vol. 109(C).
    2. Shi, Qiaoling & Shan, Yuli & Zhong, Chao & Cao, Ye & Xue, Rui, 2022. "How would GVCs participation affect carbon intensity in the “Belt and Road Initiative” countries?," Energy Economics, Elsevier, vol. 111(C).
    3. Yan, Yunfeng & Wang, Ran & Zheng, Xiuxiu & Zhao, Zhongxiu, 2020. "Carbon endowment and trade-embodied carbon emissions in global value chains: Evidence from China," Applied Energy, Elsevier, vol. 277(C).
    4. Guimei Zhang & Guangyue Liu, 2023. "Does Global Value Chain Embedment Contribute to Environmental Pollution in Emerging Economies?," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    5. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Shi, Qiaoling & Zhao, Yuhuan & Qian, Zhiling & Zheng, Lu & Wang, Song, 2022. "Global value chains participation and carbon emissions: Evidence from Belt and Road countries," Applied Energy, Elsevier, vol. 310(C).
    7. Xixuan Guo & Kaixiang Huang & Lanyu Li & Xiaonan Wang, 2022. "Renewable Energy for Balancing Carbon Emissions and Reducing Carbon Transfer under Global Value Chains: A Way Forward," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    8. Yan, Yunfeng & Li, Xiyuan & Wang, Ran & Pan, An, 2023. "Global value chain and export-embodied carbon emissions: New evidence from foreign-invested enterprises," Economic Modelling, Elsevier, vol. 127(C).
    9. Zhong, Zhangqi & Guo, Zhifang & Zhang, Jianwu, 2021. "Does the participation in global value chains promote interregional carbon emissions transferring via trade? Evidence from 39 major economies," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    10. Sun, Hongye & Kim, Giseung, 2021. "The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity," Technology in Society, Elsevier, vol. 66(C).
    11. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    12. Alataş, Sedat, 2022. "Do environmental technologies help to reduce transport sector CO2 emissions? Evidence from the EU15 countries," Research in Transportation Economics, Elsevier, vol. 91(C).
    13. Fan, Xiaojia & Wu, Sanmang & Lei, Yalin & Li, Shantong & Li, Li, 2020. "Have China's resource-based regions improved in the division of GVCs? — Taking Shanxi Province as an example," Resources Policy, Elsevier, vol. 68(C).
    14. Chen, Jian & Zhao, Di, 2022. "Complexity of domestic production fragmentation and its impact on pollution emissions: Evidence from decomposed regional production length," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 127-137.
    15. Wang, Jing & Wan, Guanghua & Wang, Chen, 2019. "Participation in GVCs and CO2 emissions," Energy Economics, Elsevier, vol. 84(C).
    16. Ben Lahouel, Béchir & Taleb, Lotfi & Ben Zaied, Younes & Managi, Shunsuke, 2021. "Does ICT change the relationship between total factor productivity and CO2 emissions? Evidence based on a nonlinear model," Energy Economics, Elsevier, vol. 101(C).
    17. Zhiheng Wu & Guisheng Hou & Baogui Xin, 2020. "The Causality between Participation in GVCs, Renewable Energy Consumption and CO 2 Emissions," Sustainability, MDPI, vol. 12(3), pages 1-26, February.
    18. Lin, Boqiang & Huang, Chenchen, 2023. "Nonlinear relationship between digitization and energy efficiency: Evidence from transnational panel data," Energy, Elsevier, vol. 276(C).
    19. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    20. Zhu, Kunfu & Guo, Xuefan & Zhang, Zengkai, 2022. "Reevaluation of the carbon emissions embodied in global value chains based on an inter-country input-output model with multinational enterprises," Applied Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:205:y:2023:i:c:s0921800922003354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.