IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v393y2025ics0306261925007688.html
   My bibliography  Save this article

Refined multi-state modeling based battery energy storage system reliability indicators and evaluation

Author

Listed:
  • Yan, Xiaohe
  • Li, Jialiang
  • Liu, Nian

Abstract

Accurate reliability evaluation of the battery energy storage system (BESS) has great significance for enhancing BESS operational efficiency, extending service life, and reducing maintenance costs. The reliability indicators are the key link to realizing the reliability evaluation of BESS. However, current reliability indicators are mostly set up from the overall perspective of BESS, ignoring the internal battery performance degradation. These indicators do not apply to the large-capacity, multi-unit, and complex topology BESS. Therefore, this paper proposes a reliability indicator system and comprehensive evaluation method based on the refined multi-state model of BESS. Firstly, considering the performance decay of the battery cell, a multi-state model based on the state of health (SOH) of the battery cell is established. This model is expanded into a multi-state model of the BESS by combining the recursive Universal Generating Function (UGF) process of operator splitting. Then, a reliability indicator system for portraying BESS is proposed in terms of the basic dimension, temporal dimension, and spatial dimension. Finally, a comprehensive assessment of the BESS is carried out based on the extension cloud model with prospective weights, and a five-state classification of “Good-Decay-Risk-Defect-Failure” for BESS is proposed. The case study is based on the actual BESS in an energy storage power station in the Inner Mongolia. The results show that the proposed reliability indicators and methods can reflect the reliability performance variations of BESSs with different topologies efficiently.

Suggested Citation

  • Yan, Xiaohe & Li, Jialiang & Liu, Nian, 2025. "Refined multi-state modeling based battery energy storage system reliability indicators and evaluation," Applied Energy, Elsevier, vol. 393(C).
  • Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007688
    DOI: 10.1016/j.apenergy.2025.126038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925007688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Elbasuony, Ghada S. & Abdel Aleem, Shady H.E. & Ibrahim, Ahmed M. & Sharaf, Adel M., 2018. "A unified index for power quality evaluation in distributed generation systems," Energy, Elsevier, vol. 149(C), pages 607-622.
    2. Martchamadol, Jutamanee & Kumar, S., 2013. "An aggregated energy security performance indicator," Applied Energy, Elsevier, vol. 103(C), pages 653-670.
    3. Murphy, C.A. & Schleifer, A. & Eurek, K., 2021. "A taxonomy of systems that combine utility-scale renewable energy and energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    5. Guo, Qingjun & Amin, Shohel & Hao, Qianwen & Haas, Olivier, 2020. "Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    6. Xu, Xiaozhan, 2004. "A note on the subjective and objective integrated approach to determine attribute weights," European Journal of Operational Research, Elsevier, vol. 156(2), pages 530-532, July.
    7. Schimpe, Michael & Naumann, Maik & Truong, Nam & Hesse, Holger C. & Santhanagopalan, Shriram & Saxon, Aron & Jossen, Andreas, 2018. "Energy efficiency evaluation of a stationary lithium-ion battery container storage system via electro-thermal modeling and detailed component analysis," Applied Energy, Elsevier, vol. 210(C), pages 211-229.
    8. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Comprehensive Performance Assessment on Various Battery Energy Storage Systems," Energies, MDPI, vol. 11(10), pages 1-26, October.
    9. Rahman, Md Mustafizur & Oni, Abayomi Olufemi & Gemechu, Eskinder & Kumar, Amit, 2021. "The development of techno-economic models for the assessment of utility-scale electro-chemical battery storage systems," Applied Energy, Elsevier, vol. 283(C).
    10. Lin, Jianing & Bao, Minglei & Liang, Ziyang & Sang, Maosheng & Ding, Yi, 2022. "Spatio-temporal evaluation of electricity price risk considering multiple uncertainties under extreme cold weather," Applied Energy, Elsevier, vol. 328(C).
    11. Hanif, Sarmad & Alam, M.J.E. & Roshan, Kini & Bhatti, Bilal A. & Bedoya, Juan C., 2022. "Multi-service battery energy storage system optimization and control," Applied Energy, Elsevier, vol. 311(C).
    12. Liu, Yu & Liu, Qinzhen & Xie, Chaoyang & Wei, Fayuan, 2019. "Reliability assessment for multi-state systems with state transition dependency," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 276-288.
    13. Turkson, Charles & Liu, Wenbin & Acquaye, Adolf, 2024. "A data envelopment analysis based evaluation of sustainable energy generation portfolio scenarios," Applied Energy, Elsevier, vol. 363(C).
    14. Shi, Rui-jing & Fan, Xiao-chao & He, Ying, 2017. "Comprehensive evaluation index system for wind power utilization levels in wind farms in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 461-471.
    15. Zhao, Haoran & Guo, Sen & Zhao, Huiru, 2019. "Comprehensive assessment for battery energy storage systems based on fuzzy-MCDM considering risk preferences," Energy, Elsevier, vol. 168(C), pages 450-461.
    16. Berjawi, A.E.H. & Walker, S.L. & Patsios, C. & Hosseini, S.H.R., 2021. "An evaluation framework for future integrated energy systems: A whole energy systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Heylen, Evelyn & Deconinck, Geert & Van Hertem, Dirk, 2018. "Review and classification of reliability indicators for power systems with a high share of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 554-568.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Zhiming & Gao, Yan & Xu, Chuanbo, 2021. "Evaluation of energy management system for regional integrated energy system under interval type-2 hesitant fuzzy environment," Energy, Elsevier, vol. 222(C).
    2. Nan Li & Haining Zhang & Xiangcheng Zhang & Xue Ma & Sen Guo, 2020. "How to Select the Optimal Electrochemical Energy Storage Planning Program? A Hybrid MCDM Method," Energies, MDPI, vol. 13(4), pages 1-20, February.
    3. Khaled Alawasa & Adib Allahham & Ala’aldeen Al-Halhouli & Mohammed Al-Mahmodi & Musab Hamdan & Yara Khawaja & Hani Muhsen & Saqer Alja’afreh & Abdullah Al-Odienat & Ali Al-Dmour & Ahmad Aljaafreh & Ah, 2025. "Techno-Socio-Economic Framework for Energy Storage System Selection in Jordan," Energies, MDPI, vol. 18(12), pages 1-26, June.
    4. Haoran Zhao & Sen Guo, 2024. "Risks assessment on island micro-grids construction schemes employing a fuzzy-MCDM framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 13185-13216, May.
    5. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    6. Yu, Yang & Wu, Shibo & Yu, Jianxing & Xu, Ya & Song, Lin & Xu, Weipeng, 2022. "A hybrid multi-criteria decision-making framework for offshore wind turbine selection: A case study in China," Applied Energy, Elsevier, vol. 328(C).
    7. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Wang, 2002. "Consistent testing for stochastic dominance: a subsampling approach," CeMMAP working papers 03/02, Institute for Fiscal Studies.
    8. Heiko Karle & Georg Kirchsteiger & Martin Peitz, 2015. "Loss Aversion and Consumption Choice: Theory and Experimental Evidence," American Economic Journal: Microeconomics, American Economic Association, vol. 7(2), pages 101-120, May.
    9. Shoji, Isao & Kanehiro, Sumei, 2016. "Disposition effect as a behavioral trading activity elicited by investors' different risk preferences," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 104-112.
    10. Muhammad Kashif & Thomas Leirvik, 2022. "The MAX Effect in an Oil Exporting Country: The Case of Norway," JRFM, MDPI, vol. 15(4), pages 1-16, March.
    11. Boone, Jan & Sadrieh, Abdolkarim & van Ours, Jan C., 2009. "Experiments on unemployment benefit sanctions and job search behavior," European Economic Review, Elsevier, vol. 53(8), pages 937-951, November.
    12. Jos'e Cl'audio do Nascimento, 2019. "Behavioral Biases and Nonadditive Dynamics in Risk Taking: An Experimental Investigation," Papers 1908.01709, arXiv.org, revised Apr 2023.
    13. Martín Egozcue & Sébastien Massoni & Wing-Keung Wong & RiÄ ardas Zitikis, 2012. "Integration-segregation decisions under general value functions: "Create your own bundle — choose 1, 2, or all 3!"," Documents de travail du Centre d'Economie de la Sorbonne 12057, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    14. Howard Kunreuther & Erwann Michel-Kerjan, 2015. "Demand for fixed-price multi-year contracts: Experimental evidence from insurance decisions," Journal of Risk and Uncertainty, Springer, vol. 51(2), pages 171-194, October.
    15. Francesco GUALA, 2017. "Preferences: Neither Behavioural nor Mental," Departmental Working Papers 2017-05, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    16. Shi, Yun & Cui, Xiangyu & Zhou, Xunyu, 2020. "Beta and Coskewness Pricing: Perspective from Probability Weighting," SocArXiv 5rqhv, Center for Open Science.
    17. Bin Zou, 2017. "Optimal Investment In Hedge Funds Under Loss Aversion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-32, May.
    18. Alex Stomper & Marie-Louise Vierø, 2015. "Iterated Expectations Under Rank-dependent Expected Utility And Model Consistency," Working Paper 1228, Economics Department, Queen's University.
    19. Liu, Zhiqiang & Yan, Miao & Fan, Youqing & Chen, Liling, 2021. "Ascribed or achieved? The role of birth order on innovative behaviour in the workplace," Journal of Business Research, Elsevier, vol. 134(C), pages 480-492.
    20. Kazi Iqbal & Asad Islam & John List & Vy Nguyen, 2021. "Myopic Loss Aversion and Investment Decisions: From the Laboratory to the Field," Framed Field Experiments 000730, The Field Experiments Website.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.