IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v97y2018icp554-568.html
   My bibliography  Save this article

Review and classification of reliability indicators for power systems with a high share of renewable energy sources

Author

Listed:
  • Heylen, Evelyn
  • Deconinck, Geert
  • Van Hertem, Dirk

Abstract

Power systems with a high share of renewable energy sources face new challenges with respect to reliability management. Scientific literature argues that a paradigm shift is needed in terms of reliability management to efficiently integrate a large amount of renewable energy sources and the required flexibility services. Reliability management involves the use of indicators to support system operation and to assess its performance. Many indicators (proposed to be) used in power system reliability management are presented in technical and scientific literature. To coordinate the development, selection and use of indicators in power systems with a high share of renewable energy sources, this paper presents a structured and consistent overview of the characteristics and the scope of indicators currently in use and available in the literature. A transparent way to characterize indicators is proposed. Available indicators are analyzed in terms of the generic properties of an adequate indicator: relevance in the context of evolving reliability management, ease of use, data availability and reliability determined by the data accuracy. Based on this analysis, missing indicators, shortcomings of existing indicators and directions for future work in a practical and scientific context are identified.

Suggested Citation

  • Heylen, Evelyn & Deconinck, Geert & Van Hertem, Dirk, 2018. "Review and classification of reliability indicators for power systems with a high share of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 554-568.
  • Handle: RePEc:eee:rensus:v:97:y:2018:i:c:p:554-568
    DOI: 10.1016/j.rser.2018.08.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118306142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.08.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patel, Alpesh M. & Singal, Sunil Kumar, 2019. "Optimal component selection of integrated renewable energy system for power generation in stand-alone applications," Energy, Elsevier, vol. 175(C), pages 481-504.
    2. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    4. Colla, Martin & Ioannou, Anastasia & Falcone, Gioia, 2020. "Critical review of competitiveness indicators for energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    5. Al-Ghussain, Loiy & Abubaker, Ahmad M. & Darwish Ahmad, Adnan, 2021. "Superposition of Renewable-Energy Supply from Multiple Sites Maximizes Demand-Matching: Towards 100% Renewable Grids in 2050," Applied Energy, Elsevier, vol. 284(C).
    6. Kosmas A. Kavadias & Panagiotis Triantafyllou, 2021. "Hybrid Renewable Energy Systems’ Optimisation. A Review and Extended Comparison of the Most-Used Software Tools," Energies, MDPI, vol. 14(24), pages 1-28, December.
    7. Ahmed Gailani & Maher Al-Greer & Michael Short & Tracey Crosbie & Nashwan Dawood, 2020. "Lifetime Degradation Cost Analysis for Li-Ion Batteries in Capacity Markets using Accurate Physics-Based Models," Energies, MDPI, vol. 13(11), pages 1-21, June.
    8. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    9. Dong, Zhe & Li, Bowen & Li, Junyi & Huang, Xiaojin & Zhang, Zuoyi, 2022. "Online reliability assessment of energy systems based on a high-order extended-state-observer with application to nuclear reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Mariia Kozlova & Alena Lohrmann, 2021. "Steering Renewable Energy Investments in Favor of Energy System Reliability: A Call for a Hybrid Model," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    11. Buchmayr, A. & Verhofstadt, E. & Van Ootegem, L. & Sanjuan Delmás, D. & Thomassen, G. & Dewulf, J., 2021. "The path to sustainable energy supply systems: Proposal of an integrative sustainability assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Seck, Gondia Sokhna & Krakowski, Vincent & Assoumou, Edi & Maïzi, Nadia & Mazauric, Vincent, 2020. "Embedding power system’s reliability within a long-term Energy System Optimization Model: Linking high renewable energy integration and future grid stability for France by 2050," Applied Energy, Elsevier, vol. 257(C).
    13. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Khosroshahi, Hossein, 2023. "A game theoretic approach for time-of-use pricing with considering renewable portfolio standard effects and investment in energy storage technologies under government interventions," Energy, Elsevier, vol. 282(C).
    14. Beyza, Jesus & Yusta, Jose M., 2021. "The effects of the high penetration of renewable energies on the reliability and vulnerability of interconnected electric power systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Söder, Lennart & Tómasson, Egill & Estanqueiro, Ana & Flynn, Damian & Hodge, Bri-Mathias & Kiviluoma, Juha & Korpås, Magnus & Neau, Emmanuel & Couto, António & Pudjianto, Danny & Strbac, Goran & Burke, 2020. "Review of wind generation within adequacy calculations and capacity markets for different power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:97:y:2018:i:c:p:554-568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.