IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v69y2017icp461-471.html
   My bibliography  Save this article

Comprehensive evaluation index system for wind power utilization levels in wind farms in China

Author

Listed:
  • Shi, Rui-jing
  • Fan, Xiao-chao
  • He, Ying

Abstract

China's wind power installed capacity is the largest in the world, but the utilization of wind power equipment is not very good, far behind USA. In this paper, the development of China's wind power is reviewed, and the present wind power curtailment restricts the sound development of China's wind power industry. The characteristics of China's wind farm are summered. With the insatiability and intermittence, wind power is not welcome to China's electric grid, and large-scale wind power construction does not match with the existing power grid, therefore, wind power curtailment is serious and the level of wind power utilization is very low. To solve the wind power curtailment rationing problem, in this paper, combined with the characteristics of China's wind farm operation, the wind power utilization level evaluation index system has been built, reflecting the wind resource characteristics, wind power equipment type, wind power output, wind power curtailment, grid technology, operation management and so on. Taking Hami wind farm in Xinjiang province as an example, wind power utilization level is evaluated comprehensively, combined the improved analytic hierarchy process (IAHP) analysis and fuzzy comprehensive evaluation method (FCEM). The results show that the establishment of wind power utilization level comprehensive evaluation index system is helpful to find the main factors which effect the level of wind power utilization and improve the wind power field operation, which can provide reference for the planning and design of wind farm, and the results have certain value on theoretical significance and engineering application.

Suggested Citation

  • Shi, Rui-jing & Fan, Xiao-chao & He, Ying, 2017. "Comprehensive evaluation index system for wind power utilization levels in wind farms in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 461-471.
  • Handle: RePEc:eee:rensus:v:69:y:2017:i:c:p:461-471
    DOI: 10.1016/j.rser.2016.11.168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116309029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Xiao-chao & Wang, Wei-qing & Shi, Rui-jing & Li, Feng-ting, 2015. "Analysis and countermeasures of wind power curtailment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1429-1436.
    2. Yuan, Jiahai & Na, Chunning & Xu, Yan & Zhao, Changhong, 2015. "Wind turbine manufacturing in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1235-1244.
    3. Zeng, Ming & Duan, Jinhui & Wang, Liang & Zhang, Yingjie & Xue, Song, 2015. "Orderly grid connection of renewable energy generation in China: Management mode, existing problems and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 14-28.
    4. Johnston, Lewis & Díaz-González, Francisco & Gomis-Bellmunt, Oriol & Corchero-García, Cristina & Cruz-Zambrano, Miguel, 2015. "Methodology for the economic optimisation of energy storage systems for frequency support in wind power plants," Applied Energy, Elsevier, vol. 137(C), pages 660-669.
    5. He, Yongxiu & Pang, Yuexia & Zhang, Jixiang & Xia, Tian & Zhang, Ting, 2015. "Feed-in tariff mechanisms for large-scale wind power in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 9-17.
    6. Zhao, Xin-gang & Ren, Ling-zhi, 2015. "Focus on the development of offshore wind power in China: Has the golden period come?," Renewable Energy, Elsevier, vol. 81(C), pages 644-657.
    7. Fan, Xiao-chao & Wang, Wei-qing & Shi, Rui-jing & Li, Feng-ting, 2015. "Review of developments and insights into an index system of wind power utilization level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 463-471.
    8. Xue, Bing & Ma, Zhixiao & Geng, Yong & Heck, Peter & Ren, Wanxia & Tobias, Mario & Maas, Achim & Jiang, Ping & Puppim de Oliveira, Jose A. & Fujita, Tsuyoshi, 2015. "A life cycle co-benefits assessment of wind power in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 338-346.
    9. Fan, Jie & Wang, Qiang & Sun, Wei, 2015. "The failure of China׳s Energy Development Strategy 2050 and its impact on carbon emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1160-1170.
    10. Pei, Wei & Chen, Yanning & Sheng, Kun & Deng, Wei & Du, Yan & Qi, Zhiping & Kong, Li, 2015. "Temporal-spatial analysis and improvement measures of Chinese power system for wind power curtailment problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 148-168.
    11. Guo, Yue & Ru, Peng & Su, Jun & Anadon, Laura Diaz, 2015. "Not in my backyard, but not far away from me: Local acceptance of wind power in China," Energy, Elsevier, vol. 82(C), pages 722-733.
    12. Xiao, Ling & Wang, Jianzhou & Dong, Yao & Wu, Jie, 2015. "Combined forecasting models for wind energy forecasting: A case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 271-288.
    13. Sun, Shengpeng & Liu, Fengliang & Xue, Song & Zeng, Ming & Zeng, Fanxiao, 2015. "Review on wind power development in China: Current situation and improvement strategies to realize future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 589-599.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu & Guan, Zhiqiang, 2019. "Optimizing for clean-heating improvements in a district energy system with high penetration of wind power," Energy, Elsevier, vol. 175(C), pages 1085-1099.
    2. Xu, Jiuping & Liu, Liying & Wang, Fengjuan, 2022. "Equilibrium strategy-based economic-reliable approach for day-ahead scheduling towards solar-wind-gas hybrid power generation system: A case study from China," Energy, Elsevier, vol. 240(C).
    3. Xu, Li-jun & Fan, Xiao-chao & Wang, Wei-qing & Xu, Lei & Duan, You-lian & Shi, Rui-jing, 2017. "Renewable and sustainable energy of Xinjiang and development strategy of node areas in the “Silk Road Economic Belt”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 274-285.
    4. Xu, Jiuping & Wang, Fengjuan & Lv, Chengwei & Huang, Qian & Xie, Heping, 2018. "Economic-environmental equilibrium based optimal scheduling strategy towards wind-solar-thermal power generation system under limited resources," Applied Energy, Elsevier, vol. 231(C), pages 355-371.
    5. Dai, Juchuan & Yang, Xin & Wen, Li, 2018. "Development of wind power industry in China: A comprehensive assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 156-164.
    6. Tong Guo & Yajing Gao & Xiaojie Zhou & Yonggang Li & Jiaomin Liu, 2018. "Optimal Scheduling of Power System Incorporating the Flexibility of Thermal Units," Energies, MDPI, vol. 11(9), pages 1-17, August.
    7. Hu, Yang & Xi, Yunhua & Pan, Chenyang & Li, Gengda & Chen, Baowei, 2020. "Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating," Renewable Energy, Elsevier, vol. 146(C), pages 2095-2111.
    8. Muhammad Jabir & Hazlee Azil Illias & Safdar Raza & Hazlie Mokhlis, 2017. "Intermittent Smoothing Approaches for Wind Power Output: A Review," Energies, MDPI, vol. 10(10), pages 1-23, October.
    9. Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Chen, Fu & Li, Weidong, 2018. "Hydropower curtailment in Yunnan Province, southwestern China: Constraint analysis and suggestions," Renewable Energy, Elsevier, vol. 121(C), pages 700-711.
    10. Yuan, Jiahang & Luo, Xinggang & Li, Zhendong & Li, Lingfei & Ji, Pengli & Zhou, Qing & Zhang, Zhongliang, 2021. "Sustainable development evaluation on wind power compressed air energy storage projects based on multi-source heterogeneous data," Renewable Energy, Elsevier, vol. 169(C), pages 1175-1189.
    11. Guoliang Luo & Erli Dan & Xiaochun Zhang & Yiwei Guo, 2018. "Why the Wind Curtailment of Northwest China Remains High," Sustainability, MDPI, vol. 10(2), pages 1-26, February.
    12. Yan Nie & Guoxing Zhang, 2020. "Indicator system to evaluate the effectiveness and efficiency of China clean power systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1381-1401, October.
    13. Delu Wang & Xun Xue & Yadong Wang, 2021. "Overcapacity Risk of China’s Coal Power Industry: A Comprehensive Assessment and Driving Factors," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    14. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Xiao-chao & Wang, Wei-qing, 2016. "Spatial patterns and influencing factors of China׳s wind turbine manufacturing industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 482-496.
    2. Fan, Xiao-chao & Wang, Wei-qing & Shi, Rui-jing & Cheng, Zhi-jiang, 2017. "Hybrid pluripotent coupling system with wind and photovoltaic-hydrogen energy storage and the coal chemical industry in Hami, Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 950-960.
    3. Fan, Xiao-chao & Wang, Wei-qing & Shi, Rui-jing & Li, Feng-ting, 2015. "Analysis and countermeasures of wind power curtailment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1429-1436.
    4. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.
    5. Chen, Hao & Chen, Jiachuan & Han, Guoyi & Cui, Qi, 2022. "Winding down the wind power curtailment in China: What made the difference?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Grafström, Jonas, 2019. "Public policy failures related to China´s Wind Power Development," Ratio Working Papers 320, The Ratio Institute.
    7. Grafström, Jonas, 2020. "An Austrian economic perspective on failed Chinese wind power development," Ratio Working Papers 336, The Ratio Institute.
    8. Jianbo Yang & Qunyi Liu & Xin Li & Xiandan Cui, 2017. "Overview of Wind Power in China: Status and Future," Sustainability, MDPI, vol. 9(8), pages 1-12, August.
    9. Wu, Geng & Wang, Haojing & Wu, Qingguo, 2020. "Wind power development in the Belt and Road area of Xinjiang, China: Problems and solutions," Utilities Policy, Elsevier, vol. 64(C).
    10. Lubing Xie & Xiaoming Rui & Shuai Li & Xiaozhao Fan & Ruijing Shi & Guohua Li, 2018. "A Critical Analysis on Influential Factors on Power Energy Resources in China," Modern Applied Science, Canadian Center of Science and Education, vol. 12(2), pages 1-1, February.
    11. Xu, Li-jun & Fan, Xiao-chao & Wang, Wei-qing & Xu, Lei & Duan, You-lian & Shi, Rui-jing, 2017. "Renewable and sustainable energy of Xinjiang and development strategy of node areas in the “Silk Road Economic Belt”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 274-285.
    12. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    13. Song, Feng & Bi, De & Wei, Chu, 2019. "Market segmentation and wind curtailment: An empirical analysis," Energy Policy, Elsevier, vol. 132(C), pages 831-838.
    14. Sahu, Bikash Kumar, 2018. "Wind energy developments and policies in China: A short review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1393-1405.
    15. Li, Mingquan & Patiño-Echeverri, Dalia & Zhang, Junfeng (Jim), 2019. "Policies to promote energy efficiency and air emissions reductions in China's electric power generation sector during the 11th and 12th five-year plan periods: Achievements, remaining challenges, and ," Energy Policy, Elsevier, vol. 125(C), pages 429-444.
    16. Qiao, Qiao & Zeng, Xianhai & Lin, Boqiang, 2024. "Mitigating wind curtailment risk in China: The impact of subsidy reduction policy," Applied Energy, Elsevier, vol. 368(C).
    17. Chang, Victor & Chen, Yian & (Justin) Zhang, Zuopeng & Xu, Qianwen Ariel & Baudier, Patricia & Liu, Ben S.C., 2021. "The market challenge of wind turbine industry-renewable energy in PR China and Germany," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    18. Cao, Yijia & Wang, Xifan & Li, Yong & Tan, Yi & Xing, Jianbo & Fan, Ruixiang, 2016. "A comprehensive study on low-carbon impact of distributed generations on regional power grids: A case of Jiangxi provincial power grid in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 766-778.
    19. Xu, Fangqiu & Liu, Jicheng & Lin, Shuaishuai & Dai, Qiongjie & Li, Cunbin, 2018. "A multi-objective optimization model of hybrid energy storage system for non-grid-connected wind power: A case study in China," Energy, Elsevier, vol. 163(C), pages 585-603.
    20. Guangling Zhao & Josep M. Guerrero & Yingying Pei, 2016. "Marginal Generation Technology in the Chinese Power Market towards 2030 Based on Consequential Life Cycle Assessment," Energies, MDPI, vol. 9(10), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:69:y:2017:i:c:p:461-471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.