IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i8p1454-d108579.html
   My bibliography  Save this article

Overview of Wind Power in China: Status and Future

Author

Listed:
  • Jianbo Yang

    (Institute of Mineral Resources, Chinese Academy Geological Sciences, Beijing 100037, China)

  • Qunyi Liu

    (Research Center for Strategy of Global Mineral Resources, Chinese Academy Geological Sciences, Beijing 100037, China)

  • Xin Li

    (College of Management Science, Chengdu University of Technology, Chengdu 610051, China)

  • Xiandan Cui

    (College of Management Science, Chengdu University of Technology, Chengdu 610051, China)

Abstract

Due to the rapid economic development in China, the conflict between the increasing traditional energy consumption and the severe environmental threats is more and more serious. To ease the situation, greater use of wind energy in China could be the solution for energy conservation and sustainable environment in the long run. This paper describes the presentation of wind power in China, which covers distribution, bases, installed capacity, power generation from the spatial perspective and the environmental benefit. In addition, grey model (GM(1,1) ) and scenario analysis are employed to forecast the installed capacity in China from 2017 to 2025, then the evaluation of two methods is presented. By this research, the results are shown as the following: (1) the North region has great wind energy with 2500–3000 giga watt (GW) and the offshore wind energy in the Southeast is abundant; (2) the Inner Mongolia base located in North China makes a great contribution to wind power as well as having great potential for wind power development with the potential of 1300 GW; (3) the growth rate of installed capacity and wind power generation in China is declining with 100% in 2006 to 30% in 2015, 107% in 2009 to 17% in 2015, respectively; (4) the “three North” region has made a great contribution to current installed capacity and wind power generation with 74% and 71%, respectively; (5) wind power has significant environmental benefits with coal reduction of 23,887 × 10 4 tce, CO 2 reduction of 66,854 × 10 4 tons and SO 2 reduction of 173 × 10 4 tons in total from 2008 to 2015; (6) the installed capacity in China from 2017 to 2025 is predicted utilizing a GM(1,1) model with 38,311.1810 × 10 3 GW in 2025, while, with a scenario analysis, the installed capacity will reach up to 40,000 × 10 3 GW in 2025 under the high GDP growth rate and 29,000 × 10 3 GW in 2025 under the low GDP growth rate, respectively. Finally, it can be concluded that China has a solid foundation for the wind power development due to its abundant wind resources and great potential for wind power. Furthermore, the sustainable development can be guaranteed, and reduction in energy usage as well as emissions can be achieved by promoting wind power widely and effectively.

Suggested Citation

  • Jianbo Yang & Qunyi Liu & Xin Li & Xiandan Cui, 2017. "Overview of Wind Power in China: Status and Future," Sustainability, MDPI, vol. 9(8), pages 1-12, August.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1454-:d:108579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/8/1454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/8/1454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Vautard & Françoise Thais & Isabelle Tobin & François-Marie Bréon & Jean-Guy Devezeaux de Lavergne & Augustin Colette & Pascal Yiou & Paolo Michele Ruti, 2014. "Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    2. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "Flow chart of methanol in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 541-550.
    3. Feng, Yi & Lin, Heyun & Ho, S.L. & Yan, Jianhu & Dong, Jianning & Fang, Shuhua & Huang, Yunkai, 2015. "Overview of wind power generation in China: Status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 847-858.
    4. Zhao, Xin-gang & Ren, Ling-zhi, 2015. "Focus on the development of offshore wind power in China: Has the golden period come?," Renewable Energy, Elsevier, vol. 81(C), pages 644-657.
    5. Yan Xu & Jiahai Yuan & Huiming Xu, 2017. "Dynamic Integrated Resource Strategic Planning Model: A Case Study of China’s Power Sector Planning into 2050," Sustainability, MDPI, vol. 9(7), pages 1-21, July.
    6. Zhao, Zhen-Yu & Chang, Rui-Dong & Chen, Yu-Long, 2016. "What hinder the further development of wind power in China?—A socio-technical barrier study," Energy Policy, Elsevier, vol. 88(C), pages 465-476.
    7. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    8. Kothari, Richa & Tyagi, V.V. & Pathak, Ashish, 2010. "Waste-to-energy: A way from renewable energy sources to sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3164-3170, December.
    9. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    10. Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
    11. AfDB AfDB, . "Annual Report 2012," Annual Report, African Development Bank, number 461.
    12. Xue, Bing & Ma, Zhixiao & Geng, Yong & Heck, Peter & Ren, Wanxia & Tobias, Mario & Maas, Achim & Jiang, Ping & Puppim de Oliveira, Jose A. & Fujita, Tsuyoshi, 2015. "A life cycle co-benefits assessment of wind power in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 338-346.
    13. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    14. Harijan, Khanji & Uqaili, Mohammad A. & Memon, Mujeebuddin & Mirza, Umar K., 2011. "Forecasting the diffusion of wind power in Pakistan," Energy, Elsevier, vol. 36(10), pages 6068-6073.
    15. Sun, Bing & Yu, Yixin & Qin, Chao, 2017. "Should China focus on the distributed development of wind and solar photovoltaic power generation? A comparative study," Applied Energy, Elsevier, vol. 185(P1), pages 421-439.
    16. Fayaz, H. & Saidur, R. & Razali, N. & Anuar, F.S. & Saleman, A.R. & Islam, M.R., 2012. "An overview of hydrogen as a vehicle fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5511-5528.
    17. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    18. Pei, Wei & Chen, Yanning & Sheng, Kun & Deng, Wei & Du, Yan & Qi, Zhiping & Kong, Li, 2015. "Temporal-spatial analysis and improvement measures of Chinese power system for wind power curtailment problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 148-168.
    19. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    20. Ye, Lin & Zhao, Yongning & Zeng, Cheng & Zhang, Cihang, 2017. "Short-term wind power prediction based on spatial model," Renewable Energy, Elsevier, vol. 101(C), pages 1067-1074.
    21. Wang, Tao & Watson, Jim, 2010. "Scenario analysis of China's emissions pathways in the 21st century for low carbon transition," Energy Policy, Elsevier, vol. 38(7), pages 3537-3546, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Xu & Haijun Wang & Liying Zhang & Mingji Deng & Hechuan Jiang & Yaohua Guo & Xu Yang, 2022. "Research on Bearing Capacity of Secant Piled-Bucket Foundation in Saturated Clay," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    2. Yechennan Peng & Hossein Azadi & Liang (Emlyn) Yang & Jürgen Scheffran & Ping Jiang, 2022. "Assessing the Siting Potential of Low-Carbon Energy Power Plants in the Yangtze River Delta: A GIS-Based Approach," Energies, MDPI, vol. 15(6), pages 1-20, March.
    3. Zhuo Chen & Wei Li & Junhong Guo & Zhe Bao & Zhangrong Pan & Baodeng Hou, 2020. "Projection of Wind Energy Potential over Northern China Using a Regional Climate Model," Sustainability, MDPI, vol. 12(10), pages 1-16, May.
    4. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    5. Xin-gang, Zhao & Zhen, Wei, 2019. "The technical efficiency of China's wind power list enterprises: An estimation based on DEA method and micro-data," Renewable Energy, Elsevier, vol. 133(C), pages 470-479.
    6. Wang, Cheng & Liu, Chuang & Lin, Yuzhang & Bi, Tianshu, 2020. "Day-ahead dispatch of integrated electric-heat systems considering weather-parameter-driven residential thermal demands," Energy, Elsevier, vol. 203(C).
    7. Karijadi, Irene & Chou, Shuo-Yan & Dewabharata, Anindhita, 2023. "Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method," Renewable Energy, Elsevier, vol. 218(C).
    8. Wei, Youzhou & Zou, Qing-Ping & Lin, Xianghong, 2021. "Evolution of price policy for offshore wind energy in China: Trilemma of capacity, price and subsidy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    9. Demetriou, E. & Hadjistassou, C., 2021. "Can China decarbonize its electricity sector?," Energy Policy, Elsevier, vol. 148(PB).
    10. Jie Ma & Amos Oppong & Kingsley Nketia Acheampong & Lucille Aba Abruquah, 2018. "Forecasting Renewable Energy Consumption under Zero Assumptions," Sustainability, MDPI, vol. 10(3), pages 1-17, February.
    11. Grimoux, Valentin, 2018. "China’s Energy Policy & Investments and their Impact on the Sub-Saharan African Region," ESP: Energy Scenarios and Policy 276177, Fondazione Eni Enrico Mattei (FEEM).
    12. Loon Ching Tang & Joyce M.W. Low, 2020. "Strategic intent of OBOR: enhancing energy supply resilience," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-25, December.
    13. Bi, Cheng & Law, Adrian Wing-Keung, 2023. "Co-locating offshore wind and floating solar farms – Effect of high wind and wave conditions on solar power performance," Energy, Elsevier, vol. 266(C).
    14. Guangyu Qin & Qingyou Yan & Jingyao Zhu & Chuanbo Xu & Daniel M. Kammen, 2021. "Day-Ahead Wind Power Forecasting Based on Wind Load Data Using Hybrid Optimization Algorithm," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    15. Valentin Grimoux, 2018. "China’s Energy Policy & Investments and their Impact on the Sub-Saharan African Region," Working Papers 2018.27, Fondazione Eni Enrico Mattei.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Hao & Chen, Jiachuan & Han, Guoyi & Cui, Qi, 2022. "Winding down the wind power curtailment in China: What made the difference?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "Flow chart of methanol in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 541-550.
    3. Grafström, Jonas, 2019. "Public policy failures related to China´s Wind Power Development," Ratio Working Papers 320, The Ratio Institute.
    4. Zhang, Shijie & Wei, Jing & Chen, Xi & Zhao, Yuhao, 2020. "China in global wind power development: Role, status and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    5. Grafström, Jonas, 2020. "An Austrian economic perspective on failed Chinese wind power development," Ratio Working Papers 336, The Ratio Institute.
    6. Fan, Xiao-chao & Wang, Wei-qing, 2016. "Spatial patterns and influencing factors of China׳s wind turbine manufacturing industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 482-496.
    7. Shi, Rui-jing & Fan, Xiao-chao & He, Ying, 2017. "Comprehensive evaluation index system for wind power utilization levels in wind farms in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 461-471.
    8. Yuan Zhou & Meijuan Pan & Frauke Urban, 2018. "Comparing the International Knowledge Flow of China’s Wind and Solar Photovoltaic (PV) Industries: Patent Analysis and Implications for Sustainable Development," Sustainability, MDPI, vol. 10(6), pages 1-34, June.
    9. Dong, Changgui & Qi, Ye & Dong, Wenjuan & Lu, Xi & Liu, Tianle & Qian, Shuai, 2018. "Decomposing driving factors for wind curtailment under economic new normal in China," Applied Energy, Elsevier, vol. 217(C), pages 178-188.
    10. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    11. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    12. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    13. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.
    14. Ye, Lin & Zhang, Cihang & Xue, Hui & Li, Jiachen & Lu, Peng & Zhao, Yongning, 2019. "Study of assessment on capability of wind power accommodation in regional power grids," Renewable Energy, Elsevier, vol. 133(C), pages 647-662.
    15. Kim, Gyeongmin & Hur, Jin, 2021. "Probabilistic modeling of wind energy potential for power grid expansion planning," Energy, Elsevier, vol. 230(C).
    16. Ştefan Dragoş Cîrstea & Claudia Steluţa Martiş & Andreea Cîrstea & Anca Constantinescu-Dobra & Melinda Timea Fülöp, 2018. "Current Situation and Future Perspectives of the Romanian Renewable Energy," Energies, MDPI, vol. 11(12), pages 1-22, November.
    17. Ghouchani, Mahya & Taji, Mohammad & Cheheltani, Atefeh Sadat & Chehr, Mohammad Seifi, 2021. "Developing a perspective on the use of renewable energy in Iran," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    18. Faria, Ricardo & Marques, Pedro & Moura, Pedro & Freire, Fausto & Delgado, Joaquim & de Almeida, Aníbal T., 2013. "Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 271-287.
    19. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    20. Rongxiang Yuan & Jun Ye & Jiazhi Lei & Timing Li, 2016. "Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage," Energies, MDPI, vol. 9(6), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1454-:d:108579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.