IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3099-d1677511.html
   My bibliography  Save this article

Techno-Socio-Economic Framework for Energy Storage System Selection in Jordan

Author

Listed:
  • Khaled Alawasa

    (Department of Electrical Engineering, Faculty of Engineering, Mutah University, Mutah, AlKarak 61710, Jordan)

  • Adib Allahham

    (Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK)

  • Ala’aldeen Al-Halhouli

    (Mechatronics Engineering Department, German Jordanian University, Madaba Street, Amman 11180, Jordan)

  • Mohammed Al-Mahmodi

    (Mechatronics Engineering Department, German Jordanian University, Madaba Street, Amman 11180, Jordan)

  • Musab Hamdan

    (Mechatronics Engineering Department, German Jordanian University, Madaba Street, Amman 11180, Jordan)

  • Yara Khawaja

    (Faculty of Engineering and Technology, Applied Science Private University, Amman 11937, Jordan)

  • Hani Muhsen

    (Mechatronics Engineering Department, German Jordanian University, Madaba Street, Amman 11180, Jordan)

  • Saqer Alja’afreh

    (Department of Electrical Engineering, Faculty of Engineering, Mutah University, Mutah, AlKarak 61710, Jordan)

  • Abdullah Al-Odienat

    (Department of Electrical Engineering, Faculty of Engineering, Mutah University, Mutah, AlKarak 61710, Jordan)

  • Ali Al-Dmour

    (Department of Electrical Engineering, Faculty of Engineering, Mutah University, Mutah, AlKarak 61710, Jordan)

  • Ahmad Aljaafreh

    (Department of Computer and Communication Engineering, Tafila Technical University, Tafila 66110, Jordan)

  • Ahmad Al-Abadleh

    (Department of Computer Science, Applied College, University of Tabuk, Tabuk 71491, Saudi Arabia)

  • Murad Alomari

    (National Electric Power Company (NEPCO), Amman 11118, Jordan)

  • Abdallah Alnahas

    (National Electric Power Company (NEPCO), Amman 11118, Jordan)

  • Omar Alkasasbeh

    (Samra Electric Power Company (SEPCO), Amman 11821, Jordan)

  • Omar Alrosan

    (Ministry of Energy and Mineral Resources (MEMR), Amman 11814, Jordan)

Abstract

Renewable energy sources (RESs) are increasingly being recognized as sustainable and accessible alternatives for the energy future. However, their intermittent nature poses significant challenges to system reliability and stability, necessitating the integration of energy storage systems (ESSs) to ensure sustainability and dependability. This study examines various ESS alternatives, evaluating their suitability for different applications using a multi-criteria decision-making (MCDM) approach. The methodology accommodates diverse criteria types, including qualitative and quantitative factors, represented as linguistic terms, interval values, and crisp numerical data. A techno-socio-economic framework for ESS selection is proposed and applied to Jordan’s unique energy landscape. This framework integrates technical performance, economic feasibility, and social considerations to identify suitable ESS solutions aligned with the country’s renewable energy goals. The study ranks twelve energy storage systems (ESSs) based on key performance criteria. Pumped hydro storage (PHS), thermal energy storage (TES), supercapacitors (SCs), and lithium-ion batteries (Li-ion BESS) lead the ranking. These systems showed the best performance in terms of scalability, efficiency, and integration with grid-scale applications in Jordan. Key applications analyzed include renewable energy integration, grid stability, load shifting, peak load regulation, frequency regulation, and seasonal energy storage. Results indicate that Li-ion batteries are most suitable for renewable energy integration, while flywheels excel in grid stability and frequency regulation. PHS was found to be the preferred solution for load shifting, peak load regulation, and seasonal storage, with hydrogen storage emerging as a promising option for long-duration needs. These findings provide critical insights to guide policy and infrastructure planning, offering a robust model for comprehensive ESS assessment in energy transition planning for countries facing similar challenges.

Suggested Citation

  • Khaled Alawasa & Adib Allahham & Ala’aldeen Al-Halhouli & Mohammed Al-Mahmodi & Musab Hamdan & Yara Khawaja & Hani Muhsen & Saqer Alja’afreh & Abdullah Al-Odienat & Ali Al-Dmour & Ahmad Aljaafreh & Ah, 2025. "Techno-Socio-Economic Framework for Energy Storage System Selection in Jordan," Energies, MDPI, vol. 18(12), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3099-:d:1677511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bashar Younis Alkhawaldeh & Arkan Walid Al-Smadi & Ahmad Y. A. Bani Ahmad & Suleiman Mustafa El-Dalahmeh & Najwa Alsuwais & Mohammad Nassar Almarshad, 2024. "Macroeconomic Determinants of Renewable Energy Production in Jordan," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 473-481, May.
    2. Eklas Hossain & Hossain Mansur Resalat Faruque & Md. Samiul Haque Sunny & Naeem Mohammad & Nafiu Nawar, 2020. "A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects," Energies, MDPI, vol. 13(14), pages 1-127, July.
    3. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Bianchi, Francesco & Domenghini, Piergiovanni & Cotana, Franco & Wang, Jinwen, 2022. "A techno-economic analysis of a solar PV and DC battery storage system for a community energy sharing," Energy, Elsevier, vol. 244(PB).
    4. Liu, Ming & Jacob, Rhys & Belusko, Martin & Riahi, Soheila & Bruno, Frank, 2021. "Techno-economic analysis on the design of sensible and latent heat thermal energy storage systems for concentrated solar power plants," Renewable Energy, Elsevier, vol. 178(C), pages 443-455.
    5. Mahon, Harry & O'Connor, Dominic & Friedrich, Daniel & Hughes, Ben, 2022. "A review of thermal energy storage technologies for seasonal loops," Energy, Elsevier, vol. 239(PC).
    6. Kaldellis, J.K. & Zafirakis, D., 2007. "Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency," Energy, Elsevier, vol. 32(12), pages 2295-2305.
    7. Ziad M. Ali & Martin Calasan & Shady H. E. Abdel Aleem & Francisco Jurado & Foad H. Gandoman, 2023. "Applications of Energy Storage Systems in Enhancing Energy Management and Access in Microgrids: A Review," Energies, MDPI, vol. 16(16), pages 1-41, August.
    8. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    9. Roksana Yasmin & B. M. Ruhul Amin & Rakibuzzaman Shah & Andrew Barton, 2024. "A Survey of Commercial and Industrial Demand Response Flexibility with Energy Storage Systems and Renewable Energy," Sustainability, MDPI, vol. 16(2), pages 1-41, January.
    10. Rahman, Md Mustafizur & Oni, Abayomi Olufemi & Gemechu, Eskinder & Kumar, Amit, 2021. "The development of techno-economic models for the assessment of utility-scale electro-chemical battery storage systems," Applied Energy, Elsevier, vol. 283(C).
    11. Zayid M. Al-Abri & Khaled M. Alawasa & Rashid S. Al-Abri & Amer S. Al-Hinai & Ahmed S. A. Awad, 2024. "Multi-Criteria Decision-Making Approach for Optimal Energy Storage System Selection and Applications in Oman," Energies, MDPI, vol. 17(20), pages 1-25, October.
    12. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    13. Diana Lemian & Florin Bode, 2022. "Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review," Energies, MDPI, vol. 15(15), pages 1-13, August.
    14. Bruno Cárdenas & Lawrie Swinfen-Styles & James Rouse & Seamus D. Garvey, 2021. "Short-, Medium-, and Long-Duration Energy Storage in a 100% Renewable Electricity Grid: A UK Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
    15. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    17. Hoffstaedt, J.P. & Truijen, D.P.K. & Fahlbeck, J. & Gans, L.H.A. & Qudaih, M. & Laguna, A.J. & De Kooning, J.D.M. & Stockman, K. & Nilsson, H. & Storli, P.-T. & Engel, B. & Marence, M. & Bricker, J.D., 2022. "Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Manoj Kumar Pasupathi & Karthick Alagar & Michael Joseph Stalin P & Matheswaran M.M & Ghosh Aritra, 2020. "Characterization of Hybrid-nano/Paraffin Organic Phase Change Material for Thermal Energy Storage Applications in Solar Thermal Systems," Energies, MDPI, vol. 13(19), pages 1-15, September.
    19. Lam, Dylon Hao Cheng & Lim, Yun Seng & Wong, Jianhui & Allahham, Adib & Patsios, Charalampos, 2023. "A novel characteristic-based degradation model of Li-ion batteries for maximum financial benefits of energy storage system during peak demand reductions," Applied Energy, Elsevier, vol. 343(C).
    20. Barelli, L. & Desideri, U. & Ottaviano, A., 2015. "Challenges in load balance due to renewable energy sources penetration: The possible role of energy storage technologies relative to the Italian case," Energy, Elsevier, vol. 93(P1), pages 393-405.
    21. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    22. Zhao, Haoran & Guo, Sen & Zhao, Huiru, 2019. "Comprehensive assessment for battery energy storage systems based on fuzzy-MCDM considering risk preferences," Energy, Elsevier, vol. 168(C), pages 450-461.
    23. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    24. Xiaotong Qie & Rui Zhang & Yanyong Hu & Xialing Sun & Xue Chen, 2021. "A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand," Energies, MDPI, vol. 14(20), pages 1-29, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domínguez, M. & Fernández-Cardador, A. & Fernández-Rodríguez, A. & Cucala, A.P. & Pecharromán, R.R. & Urosa Sánchez, P. & Vadillo Cortázar, I., 2025. "Review on the use of energy storage systems in railway applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    2. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    3. Xiaotong Qie & Rui Zhang & Yanyong Hu & Xialing Sun & Xue Chen, 2021. "A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand," Energies, MDPI, vol. 14(20), pages 1-29, October.
    4. Muhammed Y. Worku, 2022. "Recent Advances in Energy Storage Systems for Renewable Source Grid Integration: A Comprehensive Review," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    5. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    6. Hilario J. Torres-Herrera & Alexis Lozano-Medina, 2021. "Methodological Proposal for the Assessment Potential of Pumped Hydropower Energy Storage: Case of Gran Canaria Island," Energies, MDPI, vol. 14(12), pages 1-27, June.
    7. James J. H. Liou & Peace Y. L. Liu & Sun-Weng Huang, 2023. "A Hybrid Model to Explore the Barriers to Enterprise Energy Storage System Adoption," Mathematics, MDPI, vol. 11(19), pages 1-21, October.
    8. Arsalis, Alexandros & Papanastasiou, Panos & Georghiou, George E., 2022. "A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications," Renewable Energy, Elsevier, vol. 191(C), pages 943-960.
    9. Zaiter, Issa & Ramadan, Mohamad & Bouabid, Ali & Mayyas, Ahmad & El-Fadel, Mutasem & Mezher, Toufic, 2024. "Enabling industrial decarbonization: Framework for hydrogen integration in the industrial energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    10. Tawalbeh, Muhammad & Murtaza, Sana Z.M. & Al-Othman, Amani & Alami, Abdul Hai & Singh, Karnail & Olabi, Abdul Ghani, 2022. "Ammonia: A versatile candidate for the use in energy storage systems," Renewable Energy, Elsevier, vol. 194(C), pages 955-977.
    11. Olabi, Abdul Ghani & Abbas, Qaisar & Shinde, Pragati A. & Abdelkareem, Mohammad Ali, 2023. "Rechargeable batteries: Technological advancement, challenges, current and emerging applications," Energy, Elsevier, vol. 266(C).
    12. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    13. Zhang, Aibo & Yin, Zhaoyuan & Wu, Zhiying & Xie, Min & Liu, Yiliu & Yu, Haoshui, 2023. "Investigation of the compressed air energy storage (CAES) system utilizing systems-theoretic process analysis (STPA) towards safe and sustainable energy supply," Renewable Energy, Elsevier, vol. 206(C), pages 1075-1085.
    14. Linda Barelli & Gianni Bidini & Fabio Bonucci & Luca Castellini & Simone Castellini & Andrea Ottaviano & Dario Pelosi & Alberto Zuccari, 2018. "Dynamic Analysis of a Hybrid Energy Storage System (H-ESS) Coupled to a Photovoltaic (PV) Plant," Energies, MDPI, vol. 11(2), pages 1-23, February.
    15. Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).
    16. Hamdy, Sarah & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Exergoeconomic optimization of an adiabatic cryogenics-based energy storage system," Energy, Elsevier, vol. 183(C), pages 812-824.
    17. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.
    18. Jake Elliot & Jason Brown & Njabulo Mlilo & Les Bowtell, 2025. "Global Trends in Community Energy Storage: A Comprehensive Analysis of the Current and Future Direction," Sustainability, MDPI, vol. 17(5), pages 1-32, February.
    19. Lei Zhang & Yuxing Yuan & Su Yan & Hang Cao & Tao Du, 2025. "Advances in Modeling and Optimization of Intelligent Power Systems Integrating Renewable Energy in the Industrial Sector: A Multi-Perspective Review," Energies, MDPI, vol. 18(10), pages 1-50, May.
    20. Andrés Rengel & Alexander Aguila Téllez & Leony Ortiz & Milton Ruiz, 2023. "Optimal Insertion of Energy Storage Systems Considering the Economic Dispatch and the Minimization of Energy Not Supplied," Energies, MDPI, vol. 16(6), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3099-:d:1677511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.