IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipcs0360544221024555.html
   My bibliography  Save this article

A review of thermal energy storage technologies for seasonal loops

Author

Listed:
  • Mahon, Harry
  • O'Connor, Dominic
  • Friedrich, Daniel
  • Hughes, Ben

Abstract

As mitigating climate change becomes an increasing worldwide focus, it is vital to explore a diverse range of technologies for reducing emissions. Heating and cooling make up a significant proportion of energy demand, both domestically and in industry. An effective method of reducing this energy demand is the storage and use of waste heat through the application of seasonal thermal energy storage, used to address the mismatch between supply and demand and greatly increasing the efficiency of renewable resources. Four methods of sensible heat storage; Tank, pit, borehole, and aquifer thermal energy storage are at the time of writing at a more advanced stage of development when compared with other methods of thermal storage and are already being implemented within energy systems. This review aims to identify some of the barriers to development currently facing these methods of seasonal thermal energy storage, and subsequently some of the work being undertaken to address these barriers in order to facilitate wider levels of adoption throughout energy systems.

Suggested Citation

  • Mahon, Harry & O'Connor, Dominic & Friedrich, Daniel & Hughes, Ben, 2022. "A review of thermal energy storage technologies for seasonal loops," Energy, Elsevier, vol. 239(PC).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024555
    DOI: 10.1016/j.energy.2021.122207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221024555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Changxing & Wang, Yusheng & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2018. "Computational methods for ground thermal response of multiple borehole heat exchangers: A review," Renewable Energy, Elsevier, vol. 127(C), pages 461-473.
    2. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Sensitivity analysis of a vertical geothermal heat pump system," Applied Energy, Elsevier, vol. 170(C), pages 148-160.
    3. Hähnlein, Stefanie & Bayer, Peter & Ferguson, Grant & Blum, Philipp, 2013. "Sustainability and policy for the thermal use of shallow geothermal energy," Energy Policy, Elsevier, vol. 59(C), pages 914-925.
    4. Zhang, Youjun & Xiong, Nian & Ge, Zhihua & Zhang, Yichen & Hao, Junhong & Yang, Zhiping, 2020. "A novel cascade heating system for waste heat recovery in the combined heat and power plant integrating with the steam jet pump," Applied Energy, Elsevier, vol. 278(C).
    5. Ma, Z.D. & Jia, G.S. & Cui, X. & Xia, Z.H. & Zhang, Y.P. & Jin, L.W., 2020. "Analysis on variations of ground temperature field and thermal radius caused by ground heat exchanger crossing an aquifer layer," Applied Energy, Elsevier, vol. 276(C).
    6. Novo, Amaya V. & Bayon, Joseba R. & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2010. "Review of seasonal heat storage in large basins: Water tanks and gravel-water pits," Applied Energy, Elsevier, vol. 87(2), pages 390-397, February.
    7. Wesselink, Maxim & Liu, Wen & Koornneef, Joris & van den Broek, Machteld, 2018. "Conceptual market potential framework of high temperature aquifer thermal energy storage - A case study in the Netherlands," Energy, Elsevier, vol. 147(C), pages 477-489.
    8. Wahlroos, Mikko & Pärssinen, Matti & Manner, Jukka & Syri, Sanna, 2017. "Utilizing data center waste heat in district heating – Impacts on energy efficiency and prospects for low-temperature district heating networks," Energy, Elsevier, vol. 140(P1), pages 1228-1238.
    9. Kermani, Maziar & Wallerand, Anna S. & Kantor, Ivan D. & Maréchal, François, 2018. "Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes," Applied Energy, Elsevier, vol. 212(C), pages 1203-1225.
    10. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    11. Marcotte, D. & Pasquier, P., 2014. "Unit-response function for ground heat exchanger with parallel, series or mixed borehole arrangement," Renewable Energy, Elsevier, vol. 68(C), pages 14-24.
    12. Ucar, Aynur & Inalli, Mustafa, 2008. "Thermal and economic comparisons of solar heating systems with seasonal storage used in building heating," Renewable Energy, Elsevier, vol. 33(12), pages 2532-2539.
    13. Azharul Karim & Ashley Burnett & Sabrina Fawzia, 2018. "Investigation of Stratified Thermal Storage Tank Performance for Heating and Cooling Applications," Energies, MDPI, vol. 11(5), pages 1-15, April.
    14. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    15. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
    16. Başer, Tuğçe & McCartney, John S., 2020. "Transient evaluation of a soil-borehole thermal energy storage system," Renewable Energy, Elsevier, vol. 147(P2), pages 2582-2598.
    17. Rad, Farzin M. & Fung, Alan S., 2016. "Solar community heating and cooling system with borehole thermal energy storage – Review of systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1550-1561.
    18. Zhu, Li & Chen, Sarula & Yang, Yang & Tian, Wei & Sun, Yong & Lyu, Mian, 2019. "Global sensitivity analysis on borehole thermal energy storage performances under intermittent operation mode in the first charging phase," Renewable Energy, Elsevier, vol. 143(C), pages 183-198.
    19. Bakr, Mahmoud & van Oostrom, Niels & Sommer, Wijb, 2013. "Efficiency of and interference among multiple Aquifer Thermal Energy Storage systems; A Dutch case study," Renewable Energy, Elsevier, vol. 60(C), pages 53-62.
    20. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    21. Badenes, Borja & Sanner, Burkhard & Mateo Pla, Miguel Ángel & Cuevas, José Manuel & Bartoli, Flavia & Ciardelli, Francesco & González, Rosa M. & Ghafar, Ali Nejad & Fontana, Patrick & Lemus Zuñiga, Le, 2020. "Development of advanced materials guided by numerical simulations to improve performance and cost-efficiency of borehole heat exchangers (BHEs)," Energy, Elsevier, vol. 201(C).
    22. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    23. Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).
    24. Bai, Yakai & Wang, Zhifeng & Fan, Jianhua & Yang, Ming & Li, Xiaoxia & Chen, Longfei & Yuan, Guofeng & Yang, Junfeng, 2020. "Numerical and experimental study of an underground water pit for seasonal heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 487-508.
    25. Lu, Hongwei & Tian, Peipei & He, Li, 2019. "Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 788-796.
    26. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    27. Li, Gang, 2016. "Sensible heat thermal storage energy and exergy performance evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 897-923.
    28. Babaei, Masoud & Nick, Hamidreza M., 2019. "Performance of low-enthalpy geothermal systems: Interplay of spatially correlated heterogeneity and well-doublet spacings," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    29. Renaldi, Renaldi & Friedrich, Daniel, 2019. "Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK," Applied Energy, Elsevier, vol. 236(C), pages 388-400.
    30. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    31. Kocijel, Lino & Mrzljak, Vedran & Glažar, Vladimir, 2020. "Numerical analysis of geometrical and process parameters influence on temperature stratification in a large volumetric heat storage tank," Energy, Elsevier, vol. 194(C).
    32. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    33. Al-Habaibeh, Amin & Shakmak, Bubaker & Fanshawe, Simon, 2018. "Assessment of a novel technology for a stratified hot water energy storage – The water snake," Applied Energy, Elsevier, vol. 222(C), pages 189-198.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, X.C. & Xu, H.J. & Hua, W.S., 2023. "Decomposition performance and kinetics analysis of magnesium hydroxide regulated with C/N/Ti/Si additives for thermochemical heat storage," Applied Energy, Elsevier, vol. 344(C).
    2. Feng, Yupeng & Hu, Xiannan & Li, Xuhan & Zhang, Man & Zhu, Shahong & Yang, Hairui, 2023. "Self-compensation and attenuation mechanisms of carbide slag in multicycle thermochemical heat storage," Renewable Energy, Elsevier, vol. 218(C).
    3. Wang, Wei & He, Xibo & Shuai, Yong & Qiu, Jun & Hou, Yicheng & Pan, Qinghui, 2022. "Experimental study on thermal performance of a novel medium-high temperature packed-bed latent heat storage system containing binary nitrate," Applied Energy, Elsevier, vol. 309(C).
    4. Lei Fang & Yujie Wang, 2022. "Exploring Application of Ice Source Heat Pump Technology in Solar Heating System for Space Heating," Energies, MDPI, vol. 15(11), pages 1-11, May.
    5. Chen, Qun & Meng, Nan & He, Ke-Lun & Ma, Huan & Gou, Xing, 2024. "Multi-time scale operation optimization of integrated power and thermal system considering load disturbance," Energy, Elsevier, vol. 302(C).
    6. Singh, Aditya Kumar & Rathore, Pushpendra Kumar Singh & Sharma, R.K. & Gupta, Naveen Kumar & Kumar, Rajan, 2023. "Experimental evaluation of composite concrete incorporated with thermal energy storage material for improved thermal behavior of buildings," Energy, Elsevier, vol. 263(PA).
    7. Giorgio Amati & Sauro Succi & Giacomo Falcucci, 2023. "Enhancing the Power Performance of Latent Heat Thermal Energy Storage Systems: The Adoption of Passive, Fractal Supports," Energies, MDPI, vol. 16(19), pages 1-10, September.
    8. Li, Canbing & Chen, Dawei & Li, Yingjie & Li, Furong & Li, Ran & Wu, Qiuwei & Liu, Xubin & Wei, Juan & He, Shengtao & Zhou, Bin & Allen, Stephen, 2022. "Exploring the interaction between renewables and energy storage for zero-carbon electricity systems," Energy, Elsevier, vol. 261(PA).
    9. Chen, Kecheng & Sun, Xiang & Soga, Kenichi & Nico, Peter S. & Dobson, Patrick F., 2024. "Machine-learning-assisted long-term G functions for bidirectional aquifer thermal energy storage system operation," Energy, Elsevier, vol. 301(C).
    10. Ushamah, Hafiz Muhammad & Ahmed, Naveed & Elfeky, K.E. & Mahmood, Mariam & Qaisrani, Mumtaz A. & Waqas, Adeel & Zhang, Qian, 2022. "Techno-economic analysis of a hybrid district heating with borehole thermal storage for various solar collectors and climate zones in Pakistan," Renewable Energy, Elsevier, vol. 199(C), pages 1639-1656.
    11. Li, Yufan & Bi, Yuehong & Lin, Yashan & Wang, Hongyan & Sun, Ruirui, 2023. "Analysis of the soil heat balance of a solar-ground source absorption heat pump with the soil-based energy storage in the transition season," Energy, Elsevier, vol. 264(C).
    12. Chen, Xiaoyi & Dong, Zhenbiao & Zhu, Liujuan & Ling, Xiang, 2023. "Mass transfer performance inside Ca-based thermochemical energy storage materials under different operating conditions," Renewable Energy, Elsevier, vol. 205(C), pages 340-348.
    13. Szczęśniak, Arkadiusz & Milewski, Jarosław & Dybiński, Olaf & Futyma, Kamil & Skibiński, Jakub & Martsinchyk, Aliaksandr, 2023. "Dynamic simulation of a four tank 200 m3 seasonal thermal energy storage system oriented to air conditioning at a dietary supplements factory," Energy, Elsevier, vol. 264(C).
    14. Martin Beer & Dušan Kudelas & Radim Rybár, 2022. "A Numerical Analysis of the Thermal Energy Storage Based on Porous Gyroid Structure Filled with Sodium Acetate Trihydrate," Energies, MDPI, vol. 16(1), pages 1-17, December.
    15. Li, Chuan & Li, Qi & Ge, Ruihuan, 2023. "Comparison of performance enhancement in a shell and tube based latent heat thermal energy storage device containing different structured fins," Renewable Energy, Elsevier, vol. 206(C), pages 994-1006.
    16. Gong, Mei & Ottermo, Fredric, 2022. "High-temperature thermal storage in combined heat and power plants," Energy, Elsevier, vol. 252(C).
    17. Wang, Wei & Shuai, Yong & He, Xibo & Hou, Yicheng & Qiu, Jun & Huang, Yudong, 2023. "Influence of tank-to-particle diameter ratio on thermal storage performance of random packed-bed with spherical macro-encapsulated phase change materials," Energy, Elsevier, vol. 282(C).
    18. Brown, C.S. & Kolo, I. & Lyden, A. & Franken, L. & Kerr, N. & Marshall-Cross, D. & Watson, S. & Falcone, G. & Friedrich, D. & Diamond, J., 2024. "Assessing the technical potential for underground thermal energy storage in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    19. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Li, Yi & Yu, Hao & Li, Yi & Luo, Xian & Liu, Yinjiang & Zhang, Guijin & Tang, Dong & Liu, Yaning, 2023. "Full cycle modeling of inter-seasonal compressed air energy storage in aquifers," Energy, Elsevier, vol. 263(PD).
    21. Yang, Xiaolin & Liu, Zhaoyang & Xia, Jianjun, 2023. "Optimization and analysis of combined heat and water production system based on a coal-fired power plant," Energy, Elsevier, vol. 262(PB).
    22. Joel Alpízar-Castillo & Laura Ramirez-Elizondo & Pavol Bauer, 2022. "Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review," Energies, MDPI, vol. 16(1), pages 1-31, December.
    23. Evangelos I. Sakellariou & Petros J. Axaopoulos & Bill Vaneck Bot & Ioannis E. Sarris, 2022. "Energy Performance Evaluation of a Solar PVT Thermal Energy Storage System Based on Small Size Borefield," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Brown, C.S. & Kolo, I. & Lyden, A. & Franken, L. & Kerr, N. & Marshall-Cross, D. & Watson, S. & Falcone, G. & Friedrich, D. & Diamond, J., 2024. "Assessing the technical potential for underground thermal energy storage in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Rotta Loria, Alessandro F., 2021. "The thermal energy storage potential of underground tunnels used as heat exchangers," Renewable Energy, Elsevier, vol. 176(C), pages 214-227.
    5. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Kai Stricker & Jens C. Grimmer & Robert Egert & Judith Bremer & Maziar Gholami Korzani & Eva Schill & Thomas Kohl, 2020. "The Potential of Depleted Oil Reservoirs for High-Temperature Storage Systems," Energies, MDPI, vol. 13(24), pages 1-26, December.
    8. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    10. Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Chambers, Jonathan & Zuberi, S. & Jibran, M. & Narula, Kapil & Patel, Martin K., 2020. "Spatiotemporal analysis of industrial excess heat supply for district heat networks in Switzerland," Energy, Elsevier, vol. 192(C).
    12. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    13. Fritz, M. & Plötz, P. & Schebek, L., 2022. "A technical and economical comparison of excess heat transport technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Wanruo Lou & Lingai Luo & Yuchao Hua & Yilin Fan & Zhenyu Du, 2021. "A Review on the Performance Indicators and Influencing Factors for the Thermocline Thermal Energy Storage Systems," Energies, MDPI, vol. 14(24), pages 1-19, December.
    15. Liu, Chenzhen & Cheng, Qingjiang & Li, Baohuan & Liu, Xinjian & Rao, Zhonghao, 2023. "Recent advances of sugar alcohols phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).
    17. Hoofar Hemmatabady & Julian Formhals & Bastian Welsch & Daniel Otto Schulte & Ingo Sass, 2020. "Optimized Layouts of Borehole Thermal Energy Storage Systems in 4th Generation Grids," Energies, MDPI, vol. 13(17), pages 1-26, August.
    18. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    19. Fleuchaus, Paul & Schüppler, Simon & Bloemendal, Martin & Guglielmetti, Luca & Opel, Oliver & Blum, Philipp, 2020. "Risk analysis of High-Temperature Aquifer Thermal Energy Storage (HT-ATES)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Bott, Christoph & Dressel, Ingo & Bayer, Peter, 2019. "State-of-technology review of water-based closed seasonal thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.