IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p645-d1580538.html
   My bibliography  Save this article

Effects on the Unit Commitment of a District Heating System Due to Seasonal Aquifer Thermal Energy Storage and Solar Thermal Integration

Author

Listed:
  • Joana Verheyen

    (Chair of Energy Technology, University of Duisburg-Essen, 47048 Duisburg, Germany
    Lagom.Energy GmbH, 47057 Duisburg, Germany)

  • Christian Thommessen

    (Chair of Energy Technology, University of Duisburg-Essen, 47048 Duisburg, Germany
    Lagom.Energy GmbH, 47057 Duisburg, Germany)

  • Jürgen Roes

    (Chair of Energy Technology, University of Duisburg-Essen, 47048 Duisburg, Germany
    The Hydrogen and Fuel Cell Center ZBT GmbH, 47057 Duisburg, Germany)

  • Harry Hoster

    (Chair of Energy Technology, University of Duisburg-Essen, 47048 Duisburg, Germany
    The Hydrogen and Fuel Cell Center ZBT GmbH, 47057 Duisburg, Germany)

Abstract

The ongoing transformation of district heating systems (DHSs) aims to reduce emissions and increase renewable energy sources. The objective of this work is to integrate solar thermal (ST) and seasonal aquifer thermal energy storage (ATES) in various scenarios applied to a large DHS. Mixed-integer linear programming (MILP) is used to develop a comprehensive model that minimizes operating costs, including heat pumps (HPs), combined heat and power (CHP) units, electric heat boilers (EHBs), heat-only boilers (HOBs), short-term thermal energy storage (TES), and ATES. Different ATES scenarios are compared to a reference without seasonal TES (potential of 15.3 GWh of ST). An ATES system with an injection well temperature of about 55 °C has an overall efficiency of 49.8% (58.6% with additional HPs) and increases the integrable amount of ST by 178% (42.5 GWh). For the scenario with an injection well temperature of 20 °C and HPs, the efficiency is 86.6% and ST is increased by 276% (57.5 GWh). The HOB heat supply is reduced by 8.9% up to 36.6%. However, the integration of an ATES is not always economically or environmentally beneficial. There is a high dependency on the configurations, prices, or emissions allocated to electricity procurement. Further research is of interest to investigate the sensitivity of the correlations and to apply a multi-objective MILP optimization.

Suggested Citation

  • Joana Verheyen & Christian Thommessen & Jürgen Roes & Harry Hoster, 2025. "Effects on the Unit Commitment of a District Heating System Due to Seasonal Aquifer Thermal Energy Storage and Solar Thermal Integration," Energies, MDPI, vol. 18(3), pages 1-33, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:645-:d:1580538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gadd, Henrik & Werner, Sven, 2013. "Daily heat load variations in Swedish district heating systems," Applied Energy, Elsevier, vol. 106(C), pages 47-55.
    2. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Reed, A.L. & Novelli, A.P. & Doran, K.L. & Ge, S. & Lu, N. & McCartney, J.S., 2018. "Solar district heating with underground thermal energy storage: Pathways to commercial viability in North America," Renewable Energy, Elsevier, vol. 126(C), pages 1-13.
    4. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    6. Verda, Vittorio & Colella, Francesco, 2011. "Primary energy savings through thermal storage in district heating networks," Energy, Elsevier, vol. 36(7), pages 4278-4286.
    7. Li, Shuang & Wang, Gaosheng & Zhou, Mengmeng & Song, Xianzhi & Shi, Yu & Yi, Junlin & Zhao, Jialin & Zhou, Yifan, 2024. "Thermal performance of an aquifer thermal energy storage system: Insights from novel multilateral wells," Energy, Elsevier, vol. 294(C).
    8. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    9. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    10. Renaldi, Renaldi & Friedrich, Daniel, 2019. "Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK," Applied Energy, Elsevier, vol. 236(C), pages 388-400.
    11. Fang, Tingting & Lahdelma, Risto, 2016. "Optimization of combined heat and power production with heat storage based on sliding time window method," Applied Energy, Elsevier, vol. 162(C), pages 723-732.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    3. Jebamalai, Joseph Maria & Marlein, Kurt & Laverge, Jelle, 2020. "Influence of centralized and distributed thermal energy storage on district heating network design," Energy, Elsevier, vol. 202(C).
    4. Daniilidis, Alexandros & Mindel, Julian E. & De Oliveira Filho, Fleury & Guglielmetti, Luca, 2022. "Techno-economic assessment and operational CO2 emissions of High-Temperature Aquifer Thermal Energy Storage (HT-ATES) using demand-driven and subsurface-constrained dimensioning," Energy, Elsevier, vol. 249(C).
    5. Francesco Neirotti & Michel Noussan & Stefano Riverso & Giorgio Manganini, 2019. "Analysis of Different Strategies for Lowering the Operation Temperature in Existing District Heating Networks," Energies, MDPI, vol. 12(2), pages 1-17, January.
    6. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    7. Capone, Martina & Guelpa, Elisa & Mancò, Giulia & Verda, Vittorio, 2021. "Integration of storage and thermal demand response to unlock flexibility in district multi-energy systems," Energy, Elsevier, vol. 237(C).
    8. Guelpa, Elisa & Verda, Vittorio, 2021. "Demand response and other demand side management techniques for district heating: A review," Energy, Elsevier, vol. 219(C).
    9. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    11. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    13. Cameron, Lewis & Winskel, Mark & Bolton, Ronan, 2025. "Explaining the emergence and absence of Seasonal Thermal Energy Storage in the UK: Evidence from local case studies," Applied Energy, Elsevier, vol. 377(PB).
    14. Katarina Marojević & Tomislav Kurevija & Marija Macenić, 2025. "Challenges and Opportunities for Aquifer Thermal Energy Storage (ATES) in EU Energy Transition Efforts—An Overview," Energies, MDPI, vol. 18(4), pages 1-25, February.
    15. Mahon, Harry & O'Connor, Dominic & Friedrich, Daniel & Hughes, Ben, 2022. "A review of thermal energy storage technologies for seasonal loops," Energy, Elsevier, vol. 239(PC).
    16. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    17. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    18. Jackson, Matthew D. & Regnier, Geraldine & Staffell, Iain, 2024. "Aquifer Thermal Energy Storage for low carbon heating and cooling in the United Kingdom: Current status and future prospects," Applied Energy, Elsevier, vol. 376(PA).
    19. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    20. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:645-:d:1580538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.