IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p321-d199375.html
   My bibliography  Save this article

Analysis of Different Strategies for Lowering the Operation Temperature in Existing District Heating Networks

Author

Listed:
  • Francesco Neirotti

    (Department of Energy, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Michel Noussan

    (Department of Energy, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino, Italy
    Fondazione Eni Enrico Mattei, c.so Magenta 63, 20123 Milano, Italy)

  • Stefano Riverso

    (United Technologies Research Center, Penrose Wharf Business Centre, 4th floor, T23 XN53 Cork City, Ireland)

  • Giorgio Manganini

    (United Technologies Research Center, Penrose Wharf Business Centre, 4th floor, T23 XN53 Cork City, Ireland)

Abstract

District heating systems have an important role in increasing the efficiency of the heating and cooling sector, especially when coupled to combined heat and power plants. However, in the transition towards decarbonization, current systems show some challenges for the integration of Renewable Energy Sources and Waste Heat. In particular, a crucial aspect is represented by the operating temperatures of the network. This paper analyzes two different approaches for the decrease of operation temperatures of existing networks, which are often supplying old buildings with a low degree of insulation. A simulation model was applied to some case studies to evaluate how a low-temperature operation of an existing district heating system performs compared to the standard operation, by considering two different approaches: (1) a different control strategy involving nighttime operation to avoid the morning peak demand; and (2) the partial insulation of the buildings to decrease operation temperatures without the need of modifying the heating system of the users. Different temperatures were considered to evaluate a threshold based on the characteristics of the buildings supplied by the network. The results highlight an interesting potential for optimization of existing systems by tuning the control strategies and performing some energy efficiency operation. The network temperature can be decreased with a continuous operation of the system, or with energy efficiency intervention in buildings, and distributed heat pumps used as integration could provide significant advantages. Each solution has its own limitations and critical parameters, which are discussed in detail.

Suggested Citation

  • Francesco Neirotti & Michel Noussan & Stefano Riverso & Giorgio Manganini, 2019. "Analysis of Different Strategies for Lowering the Operation Temperature in Existing District Heating Networks," Energies, MDPI, vol. 12(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:321-:d:199375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/321/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/321/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Xiaochen & Svendsen, Svend, 2018. "Ultra-low temperature district heating system with central heat pump and local boosters for low-heat-density area: Analyses on a real case in Denmark," Energy, Elsevier, vol. 159(C), pages 243-251.
    2. Nord, Natasa & Løve Nielsen, Elise Kristine & Kauko, Hanne & Tereshchenko, Tymofii, 2018. "Challenges and potentials for low-temperature district heating implementation in Norway," Energy, Elsevier, vol. 151(C), pages 889-902.
    3. Gadd, Henrik & Werner, Sven, 2013. "Daily heat load variations in Swedish district heating systems," Applied Energy, Elsevier, vol. 106(C), pages 47-55.
    4. Schweiger, Gerald & Larsson, Per-Ola & Magnusson, Fredrik & Lauenburg, Patrick & Velut, Stéphane, 2017. "District heating and cooling systems – Framework for Modelica-based simulation and dynamic optimization," Energy, Elsevier, vol. 137(C), pages 566-578.
    5. Kristo Helin & Behnam Zakeri & Sanna Syri, 2018. "Is District Heating Combined Heat and Power at Risk in the Nordic Area?—An Electricity Market Perspective," Energies, MDPI, vol. 11(5), pages 1-19, May.
    6. Noussan, Michel & Jarre, Matteo & Poggio, Alberto, 2017. "Real operation data analysis on district heating load patterns," Energy, Elsevier, vol. 129(C), pages 70-78.
    7. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    8. Verda, Vittorio & Colella, Francesco, 2011. "Primary energy savings through thermal storage in district heating networks," Energy, Elsevier, vol. 36(7), pages 4278-4286.
    9. Wahlroos, Mikko & Pärssinen, Matti & Manner, Jukka & Syri, Sanna, 2017. "Utilizing data center waste heat in district heating – Impacts on energy efficiency and prospects for low-temperature district heating networks," Energy, Elsevier, vol. 140(P1), pages 1228-1238.
    10. Steffen Nielsen & Lars Grundahl, 2018. "District Heating Expansion Potential with Low-Temperature and End-Use Heat Savings," Energies, MDPI, vol. 11(2), pages 1-17, January.
    11. Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
    12. Østergaard, Dorte Skaarup & Svendsen, Svend, 2018. "Experience from a practical test of low-temperature district heating for space heating in five Danish single-family houses from the 1930s," Energy, Elsevier, vol. 159(C), pages 569-578.
    13. Michel Noussan & Roberta Roberto & Benedetto Nastasi, 2018. "Performance Indicators of Electricity Generation at Country Level—The Case of Italy," Energies, MDPI, vol. 11(3), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Costanza Saletti & Mirko Morini & Agostino Gambarotta, 2020. "The Status of Research and Innovation on Heating and Cooling Networks as Smart Energy Systems within Horizon 2020," Energies, MDPI, vol. 13(11), pages 1-27, June.
    2. Dorota Anna Krawczyk & Tomasz Janusz Teleszewski, 2019. "Optimization of Geometric Parameters of Thermal Insulation of Pre-Insulated Double Pipes," Energies, MDPI, vol. 12(6), pages 1-11, March.
    3. Benedetta Grassi & Edoardo Alessio Piana & Gian Paolo Beretta & Mariagrazia Pilotelli, 2020. "Dynamic Approach to Evaluate the Effect of Reducing District Heating Temperature on Indoor Thermal Comfort," Energies, MDPI, vol. 14(1), pages 1-25, December.
    4. Wendel, Frank & Blesl, Markus & Brodecki, Lukasz & Hufendiek, Kai, 2022. "Expansion or decommission? – Transformation of existing district heating networks by reducing temperature levels in a cost-optimum network design," Applied Energy, Elsevier, vol. 310(C).
    5. Jan Stock & André Xhonneux & Dirk Müller, 2022. "Framework for the Automated Identification of Possible District Heating Separations to Utilise Present Heat Sources Based on Existing Network Topology," Energies, MDPI, vol. 15(21), pages 1-31, November.
    6. Rakesh Sinha & Birgitte Bak-Jensen & Jayakrishnan Radhakrishna Pillai, 2019. "Autonomous Controller for Flexible Operation of Heat Pumps in Low-Voltage Distribution Network," Energies, MDPI, vol. 12(8), pages 1-19, April.
    7. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Miguel Gonzalez-Salazar & Thomas Langrock & Christoph Koch & Jana Spieß & Alexander Noack & Markus Witt & Michael Ritzau & Armin Michels, 2020. "Evaluation of Energy Transition Pathways to Phase out Coal for District Heating in Berlin," Energies, MDPI, vol. 13(23), pages 1-27, December.
    9. Tomasz Janusz Teleszewski & Dorota Anna Krawczyk & Antonio Rodero, 2019. "Reduction of Heat Losses Using Quadruple Heating Pre-Insulated Networks: A Case Study," Energies, MDPI, vol. 12(24), pages 1-12, December.
    10. Dorota Anna Krawczyk & Tomasz Janusz Teleszewski, 2019. "Reduction of Heat Losses in a Pre-Insulated Network Located in Central Poland by Lowering the Operating Temperature of the Water and the Use of Egg-shaped Thermal Insulation: A Case Study," Energies, MDPI, vol. 12(11), pages 1-12, June.
    11. Golmohamadi, Hessam, 2021. "Stochastic energy optimization of residential heat pumps in uncertain electricity markets," Applied Energy, Elsevier, vol. 303(C).
    12. Hering, Dominik & Cansev, Mehmet Ege & Tamassia, Eugenio & Xhonneux, André & Müller, Dirk, 2021. "Temperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming," Energy, Elsevier, vol. 224(C).
    13. Østergaard, Dorte Skaarup & Tunzi, Michele & Svendsen, Svend, 2021. "What does a well-functioning heating system look like? Investigation of ten Danish buildings that utilize district heating efficiently," Energy, Elsevier, vol. 227(C).
    14. Erica Corradi & Mosè Rossi & Alice Mugnini & Anam Nadeem & Gabriele Comodi & Alessia Arteconi & Danilo Salvi, 2021. "Energy, Environmental, and Economic Analyses of a District Heating (DH) Network from Both Thermal Plant and End-Users’ Prospective: An Italian Case Study," Energies, MDPI, vol. 14(22), pages 1-25, November.
    15. Benakopoulos, Theofanis & Vergo, William & Tunzi, Michele & Salenbien, Robbe & Kolarik, Jakub & Svendsen, Svend, 2022. "Energy and cost savings with continuous low temperature heating versus intermittent heating of an office building with district heating," Energy, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    2. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    3. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    4. Li, Haoran & Hou, Juan & Hong, Tianzhen & Ding, Yuemin & Nord, Natasa, 2021. "Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres," Energy, Elsevier, vol. 219(C).
    5. Sorknæs, Peter & Nielsen, Steffen & Lund, Henrik & Mathiesen, Brian Vad & Moreno, Diana & Thellufsen, Jakob Zinck, 2022. "The benefits of 4th generation district heating and energy efficient datacentres," Energy, Elsevier, vol. 260(C).
    6. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    7. Johan Simonsson & Khalid Tourkey Atta & Gerald Schweiger & Wolfgang Birk, 2021. "Experiences from City-Scale Simulation of Thermal Grids," Resources, MDPI, vol. 10(2), pages 1-20, January.
    8. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    9. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    10. Janne Suhonen & Juha Jokisalo & Risto Kosonen & Ville Kauppi & Yuchen Ju & Philipp Janßen, 2020. "Demand Response Control of Space Heating in Three Different Building Types in Finland and Germany," Energies, MDPI, vol. 13(23), pages 1-35, November.
    11. Capone, Martina & Guelpa, Elisa & Mancò, Giulia & Verda, Vittorio, 2021. "Integration of storage and thermal demand response to unlock flexibility in district multi-energy systems," Energy, Elsevier, vol. 237(C).
    12. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Pipiciello, Mauro & Caldera, Matteo & Cozzini, Marco & Ancona, Maria A. & Melino, Francesco & Di Pietra, Biagio, 2021. "Experimental characterization of a prototype of bidirectional substation for district heating with thermal prosumers," Energy, Elsevier, vol. 223(C).
    14. Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Hansen, Kasper Klan & Svendsen, Svend, 2022. "Implementation of a strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators," Energy, Elsevier, vol. 251(C).
    15. Kaisa Kontu & Jussi Vimpari & Petri Penttinen & Seppo Junnila, 2018. "City Scale Demand Side Management in Three Different-Sized District Heating Systems," Energies, MDPI, vol. 11(12), pages 1-18, December.
    16. Zhu, Tingting & Ommen, Torben & Meesenburg, Wiebke & Thorsen, Jan Eric & Elmegaard, Brian, 2021. "Steady state behavior of a booster heat pump for hot water supply in ultra-low temperature district heating network," Energy, Elsevier, vol. 237(C).
    17. Huang, Tao & Yang, Xiaochen & Svendsen, Svend, 2020. "Multi-mode control method for the existing domestic hot water storage tanks with district heating supply," Energy, Elsevier, vol. 191(C).
    18. Jebamalai, Joseph Maria & Marlein, Kurt & Laverge, Jelle, 2020. "Influence of centralized and distributed thermal energy storage on district heating network design," Energy, Elsevier, vol. 202(C).
    19. Arabkoohsar, A., 2019. "Non-uniform temperature district heating system with decentralized heat pumps and standalone storage tanks," Energy, Elsevier, vol. 170(C), pages 931-941.
    20. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:321-:d:199375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.