IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3370-d187119.html
   My bibliography  Save this article

City Scale Demand Side Management in Three Different-Sized District Heating Systems

Author

Listed:
  • Kaisa Kontu

    (Department of Built Environment, Aalto University, PO Box 11000, FI-00076 Aalto, Finland)

  • Jussi Vimpari

    (Department of Built Environment, Aalto University, PO Box 11000, FI-00076 Aalto, Finland)

  • Petri Penttinen

    (Department of Built Environment, Aalto University, PO Box 11000, FI-00076 Aalto, Finland)

  • Seppo Junnila

    (Department of Built Environment, Aalto University, PO Box 11000, FI-00076 Aalto, Finland)

Abstract

Demand side management can add flexibility to a district heating (DH) system by balancing the customer’s hourly fluctuating heat demand. The aim of this study is to analyze how different demand side management control strategies, implemented into different customer segments, impact DH production. A city scale heat demand model is constructed from the hourly heat consumption data of different customer segments. This model is used to build several demand side management scenarios to examine the effect of them on both, the heat producer, and the customers. The simulations are run for three different-sized DH systems, representing typical DH systems in Finland, in order to understand how the demand side management implementations affect the production. The findings imply that the demand side management strategy must be built individually for each specific DH system; the changing consumption profiles of different customer segments should be taken into consideration. The results show that the value of demand side management for a DH companies remains low (less than 2% in cost savings), having an effect mostly upon the medium loads without any significant decrease in annual peak heat loads. Also, the findings reflect that the DH pricing models should be developed to make demand side management more attractive to DH customers.

Suggested Citation

  • Kaisa Kontu & Jussi Vimpari & Petri Penttinen & Seppo Junnila, 2018. "City Scale Demand Side Management in Three Different-Sized District Heating Systems," Energies, MDPI, vol. 11(12), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3370-:d:187119
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3370/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3370/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Le Dréau, J. & Heiselberg, P., 2016. "Energy flexibility of residential buildings using short term heat storage in the thermal mass," Energy, Elsevier, vol. 111(C), pages 991-1002.
    2. Gadd, Henrik & Werner, Sven, 2013. "Daily heat load variations in Swedish district heating systems," Applied Energy, Elsevier, vol. 106(C), pages 47-55.
    3. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    4. Wahlroos, Mikko & Pärssinen, Matti & Manner, Jukka & Syri, Sanna, 2017. "Utilizing data center waste heat in district heating – Impacts on energy efficiency and prospects for low-temperature district heating networks," Energy, Elsevier, vol. 140(P1), pages 1228-1238.
    5. Brange, Lisa & Englund, Jessica & Lauenburg, Patrick, 2016. "Prosumers in district heating networks – A Swedish case study," Applied Energy, Elsevier, vol. 164(C), pages 492-500.
    6. Difs, Kristina & Bennstam, Marcus & Trygg, Louise & Nordenstam, Lena, 2010. "Energy conservation measures in buildings heated by district heating – A local energy system perspective," Energy, Elsevier, vol. 35(8), pages 3194-3203.
    7. Nielsen, Steffen & Möller, Bernd, 2012. "Excess heat production of future net zero energy buildings within district heating areas in Denmark," Energy, Elsevier, vol. 48(1), pages 23-31.
    8. Brand, Lisa & Calvén, Alexandra & Englund, Jessica & Landersjö, Henrik & Lauenburg, Patrick, 2014. "Smart district heating networks – A simulation study of prosumers’ impact on technical parameters in distribution networks," Applied Energy, Elsevier, vol. 129(C), pages 39-48.
    9. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    10. Noussan, Michel & Jarre, Matteo & Poggio, Alberto, 2017. "Real operation data analysis on district heating load patterns," Energy, Elsevier, vol. 129(C), pages 70-78.
    11. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    12. Gadd, Henrik & Werner, Sven, 2013. "Heat load patterns in district heating substations," Applied Energy, Elsevier, vol. 108(C), pages 176-183.
    13. Dominković, D.F. & Gianniou, P. & Münster, M. & Heller, A. & Rode, C., 2018. "Utilizing thermal building mass for storage in district heating systems: Combined building level simulations and system level optimization," Energy, Elsevier, vol. 153(C), pages 949-966.
    14. Kensby, Johan & Trüschel, Anders & Dalenbäck, Jan-Olof, 2015. "Potential of residential buildings as thermal energy storage in district heating systems – Results from a pilot test," Applied Energy, Elsevier, vol. 137(C), pages 773-781.
    15. Hast, Aira & Rinne, Samuli & Syri, Sanna & Kiviluoma, Juha, 2017. "The role of heat storages in facilitating the adaptation of district heating systems to large amount of variable renewable electricity," Energy, Elsevier, vol. 137(C), pages 775-788.
    16. Cai, Hanmin & Ziras, Charalampos & You, Shi & Li, Rongling & Honoré, Kristian & Bindner, Henrik W., 2018. "Demand side management in urban district heating networks," Applied Energy, Elsevier, vol. 230(C), pages 506-518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sonja Salo & Aira Hast & Juha Jokisalo & Risto Kosonen & Sanna Syri & Janne Hirvonen & Kristian Martin, 2019. "The Impact of Optimal Demand Response Control and Thermal Energy Storage on a District Heating System," Energies, MDPI, vol. 12(9), pages 1-19, May.
    2. Dorota Anna Krawczyk & Tomasz Janusz Teleszewski, 2019. "Optimization of Geometric Parameters of Thermal Insulation of Pre-Insulated Double Pipes," Energies, MDPI, vol. 12(6), pages 1-11, March.
    3. Guelpa, Elisa & Verda, Vittorio, 2021. "Demand response and other demand side management techniques for district heating: A review," Energy, Elsevier, vol. 219(C).
    4. Anna Grzegórska & Piotr Rybarczyk & Valdas Lukoševičius & Joanna Sobczak & Andrzej Rogala, 2021. "Smart Asset Management for District Heating Systems in the Baltic Sea Region," Energies, MDPI, vol. 14(2), pages 1-25, January.
    5. Miguel Gonzalez-Salazar & Thomas Langrock & Christoph Koch & Jana Spieß & Alexander Noack & Markus Witt & Michael Ritzau & Armin Michels, 2020. "Evaluation of Energy Transition Pathways to Phase out Coal for District Heating in Berlin," Energies, MDPI, vol. 13(23), pages 1-27, December.
    6. Tomasz Janusz Teleszewski & Dorota Anna Krawczyk & Antonio Rodero, 2019. "Reduction of Heat Losses Using Quadruple Heating Pre-Insulated Networks: A Case Study," Energies, MDPI, vol. 12(24), pages 1-12, December.
    7. Dorota Anna Krawczyk & Tomasz Janusz Teleszewski, 2019. "Reduction of Heat Losses in a Pre-Insulated Network Located in Central Poland by Lowering the Operating Temperature of the Water and the Use of Egg-shaped Thermal Insulation: A Case Study," Energies, MDPI, vol. 12(11), pages 1-12, June.
    8. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    9. Janne Suhonen & Juha Jokisalo & Risto Kosonen & Ville Kauppi & Yuchen Ju & Philipp Janßen, 2020. "Demand Response Control of Space Heating in Three Different Building Types in Finland and Germany," Energies, MDPI, vol. 13(23), pages 1-35, November.
    10. Salo, Sonja & Jokisalo, Juha & Syri, Sanna & Kosonen, Risto, 2019. "Individual temperature control on demand response in a district heated office building in Finland," Energy, Elsevier, vol. 180(C), pages 946-954.
    11. Kalevi Härkönen & Lea Hannola & Jukka Lassila & Mika Luoranen, 2022. "Assessment of the Electric Demand Management Potential of Educational Buildings’ Mechanical Ventilation Systems," Energies, MDPI, vol. 16(1), pages 1-14, December.
    12. Eerika Janhunen & Niina Leskinen & Seppo Junnila, 2020. "The Economic Viability of a Progressive Smart Building System with Power Storage," Sustainability, MDPI, vol. 12(15), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    2. Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
    3. Salo, Sonja & Jokisalo, Juha & Syri, Sanna & Kosonen, Risto, 2019. "Individual temperature control on demand response in a district heated office building in Finland," Energy, Elsevier, vol. 180(C), pages 946-954.
    4. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Sonja Salo & Aira Hast & Juha Jokisalo & Risto Kosonen & Sanna Syri & Janne Hirvonen & Kristian Martin, 2019. "The Impact of Optimal Demand Response Control and Thermal Energy Storage on a District Heating System," Energies, MDPI, vol. 12(9), pages 1-19, May.
    6. Kontu, K. & Rinne, S. & Junnila, S., 2019. "Introducing modern heat pumps to existing district heating systems – Global lessons from viable decarbonizing of district heating in Finland," Energy, Elsevier, vol. 166(C), pages 862-870.
    7. Liu, Guoqiang & Zhou, Xuan & Yan, Junwei & Yan, Gang, 2021. "A temperature and time-sharing dynamic control approach for space heating of buildings in district heating system," Energy, Elsevier, vol. 221(C).
    8. Shamshirband, Shahaboddin & Petković, Dalibor & Enayatifar, Rasul & Hanan Abdullah, Abdul & Marković, Dušan & Lee, Malrey & Ahmad, Rodina, 2015. "Heat load prediction in district heating systems with adaptive neuro-fuzzy method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 760-767.
    9. Janne Suhonen & Juha Jokisalo & Risto Kosonen & Ville Kauppi & Yuchen Ju & Philipp Janßen, 2020. "Demand Response Control of Space Heating in Three Different Building Types in Finland and Germany," Energies, MDPI, vol. 13(23), pages 1-35, November.
    10. Capone, Martina & Guelpa, Elisa & Mancò, Giulia & Verda, Vittorio, 2021. "Integration of storage and thermal demand response to unlock flexibility in district multi-energy systems," Energy, Elsevier, vol. 237(C).
    11. Dmytro Romanchenko & Emil Nyholm & Mikael Odenberger & Filip Johnsson, 2019. "Flexibility Potential of Space Heating Demand Response in Buildings for District Heating Systems," Energies, MDPI, vol. 12(15), pages 1-23, July.
    12. Paiho, Satu & Reda, Francesco, 2016. "Towards next generation district heating in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 915-924.
    13. Guelpa, Elisa, 2021. "Impact of thermal masses on the peak load in district heating systems," Energy, Elsevier, vol. 214(C).
    14. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    15. Francesco Neirotti & Michel Noussan & Stefano Riverso & Giorgio Manganini, 2019. "Analysis of Different Strategies for Lowering the Operation Temperature in Existing District Heating Networks," Energies, MDPI, vol. 12(2), pages 1-17, January.
    16. Zhang, Fan & Bales, Chris & Fleyeh, Hasan, 2021. "Night setback identification of district heat substations using bidirectional long short term memory with attention mechanism," Energy, Elsevier, vol. 224(C).
    17. Knudsen, Michael Dahl & Georges, Laurent & Skeie, Kristian Stenerud & Petersen, Steffen, 2021. "Experimental test of a black-box economic model predictive control for residential space heating," Applied Energy, Elsevier, vol. 298(C).
    18. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Yunbo Yang & Rongling Li & Tao Huang, 2020. "Smart Meter Data Analysis of a Building Cluster for Heating Load Profile Quantification and Peak Load Shifting," Energies, MDPI, vol. 13(17), pages 1-20, August.
    20. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3370-:d:187119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.