IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v311y2022ics0306261922000885.html
   My bibliography  Save this article

Multi-service battery energy storage system optimization and control

Author

Listed:
  • Hanif, Sarmad
  • Alam, M.J.E.
  • Roshan, Kini
  • Bhatti, Bilal A.
  • Bedoya, Juan C.

Abstract

Battery energy storage systems (BESS) have become a fundamental part of modern power systems due to their ability to provide multiple grid services. As renewable penetration increases, BESS procurement is also expected to increase and is envisioned to play a systematic and strategic role in power systems planning and operation. Therefore, in this paper we present a multiple grid service procurement and operation approach for BESS, including energy arbitrage, reserve/regulation services, power factor correction, and demand management. The proposed framework considers an optimal multi-temporal dimension and is designed to be operable for both planning and real-time operation. Moreover, the nonlinearity inherent to BESS services and the uncertainty associated with market forecast variables are addressed using techniques such as polyhedral norms and robust optimization approaches. The developed model is tested using a utility-scaled BESS, and the results show the effectiveness of the systematic BESS multi-service planning and operation approach.

Suggested Citation

  • Hanif, Sarmad & Alam, M.J.E. & Roshan, Kini & Bhatti, Bilal A. & Bedoya, Juan C., 2022. "Multi-service battery energy storage system optimization and control," Applied Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:appene:v:311:y:2022:i:c:s0306261922000885
    DOI: 10.1016/j.apenergy.2022.118614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922000885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodrigues, Daniel L. & Ye, Xianming & Xia, Xiaohua & Zhu, Bing, 2020. "Battery energy storage sizing optimisation for different ownership structures in a peer-to-peer energy sharing community," Applied Energy, Elsevier, vol. 262(C).
    2. Schroeder, Andreas, 2011. "Modeling storage and demand management in power distribution grids," Applied Energy, Elsevier, vol. 88(12), pages 4700-4712.
    3. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, December.
    4. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    5. Jangkyum Kim & Yohwan Choi & Seunghyoung Ryu & Hongseok Kim, 2017. "Robust Operation of Energy Storage System with Uncertain Load Profiles," Energies, MDPI, vol. 10(4), pages 1-15, March.
    6. Jürgen Marchgraber & Wolfgang Gawlik, 2021. "Dynamic Prioritization of Functions during Real-Time Multi-Use Operation of Battery Energy Storage Systems," Energies, MDPI, vol. 14(3), pages 1-36, January.
    7. Wu, Di & Ma, Xu & Huang, Sen & Fu, Tao & Balducci, Patrick, 2020. "Stochastic optimal sizing of distributed energy resources for a cost-effective and resilient Microgrid," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavić, Ivan & Čović, Nikolina & Pandžić, Hrvoje, 2022. "PV–battery-hydrogen plant: Cutting green hydrogen costs through multi-market positioning," Applied Energy, Elsevier, vol. 328(C).
    2. Xie, Jiahang & Yang, Rufan & Gooi, Hoay Beng & Nguyen, Hung Dinh, 2023. "PID-based CNN-LSTM for accuracy-boosted virtual sensor in battery thermal management system," Applied Energy, Elsevier, vol. 331(C).
    3. Bhatti, Bilal Ahmad & Hanif, Sarmad & Alam, Jan & Mitra, Bhaskar & Kini, Roshan & Wu, Di, 2023. "Using energy storage systems to extend the life of hydropower plants," Applied Energy, Elsevier, vol. 337(C).
    4. Zhi, Yuan & Yang, Xudong, 2023. "Scenario-based multi-objective optimization strategy for rural PV-battery systems," Applied Energy, Elsevier, vol. 345(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanif, Sarmad & Alam, M.J.E. & Fotedar, Vanshika & Crawford, Alasdair & Vartanian, Charlie & Viswanathan, Vilayanur, 2022. "Managing the techno-economic impacts of partial string failure in multistring energy storage systems," Applied Energy, Elsevier, vol. 307(C).
    2. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    3. Daniel Kitamura & Leonardo Willer & Bruno Dias & Tiago Soares, 2023. "Risk-Averse Stochastic Programming for Planning Hybrid Electrical Energy Systems: A Brazilian Case," Energies, MDPI, vol. 16(3), pages 1-16, February.
    4. Fan, Vivienne Hui & Dong, Zhaoyang & Meng, Ke, 2020. "Integrated distribution expansion planning considering stochastic renewable energy resources and electric vehicles," Applied Energy, Elsevier, vol. 278(C).
    5. Tostado-Véliz, Marcos & Hasanien, Hany M. & Rezaee Jordehi, Ahmad & Turky, Rania A. & Gómez-González, Manuel & Jurado, Francisco, 2023. "An Interval-based privacy – Aware optimization framework for electricity price setting in isolated microgrid clusters," Applied Energy, Elsevier, vol. 340(C).
    6. Lima, Ricardo M. & Novais, Augusto Q. & Conejo, Antonio J., 2015. "Weekly self-scheduling, forward contracting, and pool involvement for an electricity producer. An adaptive robust optimization approach," European Journal of Operational Research, Elsevier, vol. 240(2), pages 457-475.
    7. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    8. Christina Büsing & Sigrid Knust & Xuan Thanh Le, 2018. "Trade-off between robustness and cost for a storage loading problem: rule-based scenario generation," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 339-365, December.
    9. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    10. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    11. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    12. Chuong, T.D. & Jeyakumar, V., 2017. "Convergent hierarchy of SDP relaxations for a class of semi-infinite convex polynomial programs and applications," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 381-399.
    13. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    14. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    15. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    16. Jungsub Sim & Minsoo Kim & Dongjoo Kim & Hongseok Kim, 2021. "Cloud Energy Storage System Operation with Capacity P2P Transaction," Energies, MDPI, vol. 14(2), pages 1-13, January.
    17. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    18. Pandžić, Hrvoje & Kuzle, Igor & Capuder, Tomislav, 2013. "Virtual power plant mid-term dispatch optimization," Applied Energy, Elsevier, vol. 101(C), pages 134-141.
    19. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    20. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:311:y:2022:i:c:s0306261922000885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.