IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v386y2025ics0306261925002259.html
   My bibliography  Save this article

A negotiation-based incentive mechanism for efficient Transmission Expansion Planning considering generation investment equilibrium in deregulated environment

Author

Listed:
  • Guo, Hui
  • Xiao, Yunpeng
  • Pinson, Pierre
  • Wang, Xiuli
  • Zhang, Likai
  • Wang, Xifan

Abstract

The current Transmission Expansion Planning (TEP) incentive mechanisms are inadequate. They either fail to ensure revenue sufficiency or achieve socially optimal investment. The non-negligible coordination between TEP and Generation Expansion Planning (GEP) in the deregulated environment introduces more computational challenges to the TEP problem. This paper proposes a novel negotiation mechanism that enables Generation Companies (GenCos) and Load-Serving-Entities (LSEs) to negotiate TEP strategies with Transmission Companies (TransCo) directly. The negotiation process is modeled based on the Nash Bargaining theory. We explore the intertwined relationship between TEP and GEP through a bi-level, single-leader-multi-follower model. We transform the upper-level problem for better tractability and introduce a modified Proximal-Message-Passing (PMP) decentralized algorithm to achieve generation investment equilibrium at the lower level. We then utilize an iterative solving approach to coordinate the two levels. The feasibility and efficiency of this mechanism and methodologies are demonstrated using an IEEE 24-bus test system. The numerical results verify that our mechanism ensures revenue sufficiency and achieves socially optimal TEP strategies comparable to state-of-the-art mechanisms. Additionally, our mechanism maintains transmission network user privacy, aligns the benefits of TransCo with those of transmission network users, and ensures a fair allocation of TEP costs and risks. The proactive participation of market players enabled by the negotiation mechanism can promote the transformation towards new market systems by mitigating the stranded cost issue. Moreover, our decentralized algorithm effectively addresses the non-cooperative nature of GEP, and the computational efficiency analysis justifies the model’s scalability and practicality.

Suggested Citation

  • Guo, Hui & Xiao, Yunpeng & Pinson, Pierre & Wang, Xiuli & Zhang, Likai & Wang, Xifan, 2025. "A negotiation-based incentive mechanism for efficient Transmission Expansion Planning considering generation investment equilibrium in deregulated environment," Applied Energy, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002259
    DOI: 10.1016/j.apenergy.2025.125495
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joalland, Olivier & Pereau, Jean-Christophe & Rambonilaza, Tina, 2019. "Bargaining local compensation payments for the installation of new power transmission lines," Energy Economics, Elsevier, vol. 80(C), pages 75-85.
    2. Zhou, Qun & Tesfatsion, Leigh & Liu, Chen-Ching & Chu, Ron F. & Sun, Wei, 2013. "A Nash Approach to Planning Merchant Transmission for Renewable Resource Integration," Staff General Research Papers Archive 36496, Iowa State University, Department of Economics.
    3. Ken Binmore & Ariel Rubinstein & Asher Wolinsky, 1986. "The Nash Bargaining Solution in Economic Modelling," RAND Journal of Economics, The RAND Corporation, vol. 17(2), pages 176-188, Summer.
    4. Paul Joskow & Jean Tirole, 2005. "Merchant Transmission Investment," Journal of Industrial Economics, Wiley Blackwell, vol. 53(2), pages 233-264, June.
    5. Sappington, David E M & Sibley, David S, 1988. "Regulating without Cost Information: The Incremental Surplus Subsidy Scheme," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(2), pages 297-306, May.
    6. Taheri, S. Saeid & Kazempour, Jalal & Seyedshenava, Seyedjalal, 2017. "Transmission expansion in an oligopoly considering generation investment equilibrium," Energy Economics, Elsevier, vol. 64(C), pages 55-62.
    7. Churkin, Andrey & Bialek, Janusz & Pozo, David & Sauma, Enzo & Korgin, Nikolay, 2021. "Review of Cooperative Game Theory applications in power system expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Lavrutich, Maria & Hagspiel, Verena & Siddiqui, Afzal S., 2023. "Transmission investment under uncertainty: Reconciling private and public incentives," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1167-1188.
    9. Ma, Li & Wang, Lingfeng & Liu, Zhaoxi, 2021. "Multi-level trading community formation and hybrid trading network construction in local energy market," Applied Energy, Elsevier, vol. 285(C).
    10. Chen, Yujia & Pei, Wei & Ma, Tengfei & Xiao, Hao, 2023. "Asymmetric Nash bargaining model for peer-to-peer energy transactions combined with shared energy storage," Energy, Elsevier, vol. 278(PB).
    11. Qu, Ying & Xiao, Yunpeng & Wang, Xiuli & Wang, Xifan & Lu, Yi & Li, Jianglong, 2023. "The equilibrium analysis and potential modifications on the China pilot electricity spot market," Energy Economics, Elsevier, vol. 122(C).
    12. Li, Jinghua & Lu, Bo & Wang, Zhibang & Zhu, Mengshu, 2021. "Bi-level optimal planning model for energy storage systems in a virtual power plant," Renewable Energy, Elsevier, vol. 165(P2), pages 77-95.
    13. Coase, R. H., 1990. "The Firm, the Market, and the Law," University of Chicago Press Economics Books, University of Chicago Press, edition 1, number 9780226111018.
    14. Stephen Littlechild, 2008. "Some Alternative Approaches To Utility Regulation," Economic Affairs, Wiley Blackwell, vol. 28(3), pages 32-37, September.
    15. Pozo, David & Contreras, Javier & Sauma, Enzo, 2013. "If you build it, he will come: Anticipative power transmission planning," Energy Economics, Elsevier, vol. 36(C), pages 135-146.
    16. Roberto Serrano, 2005. "Fifty years of the Nash program, 1953-2003," Investigaciones Economicas, Fundación SEPI, vol. 29(2), pages 219-258, May.
    17. Vogelsang, Ingo, 2001. "Price Regulation for Independent Transmission Companies," Journal of Regulatory Economics, Springer, vol. 20(2), pages 141-165, September.
    18. Littlechild, Stephen, 2012. "The process of negotiating settlements at FERC," Energy Policy, Elsevier, vol. 50(C), pages 174-191.
    19. Stephen Littlechild, 2012. "Merchant and regulated transmission: theory, evidence and policy," Journal of Regulatory Economics, Springer, vol. 42(3), pages 308-335, December.
    20. Joshua S. Gans & Stephen P. King, 2000. "Options for Electricity Transmission Regulation in Australia," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 33(2), pages 145-160, June.
    21. Chao, Hung-po & Wilson, Robert, 2020. "Coordination of electricity transmission and generation investments," Energy Economics, Elsevier, vol. 86(C).
    22. Henao, A. & Sauma, E. & Reyes, T. & Gonzalez, A., 2017. "What is the value of the option to defer an investment in Transmission Expansion Planning? An estimation using Real Options," Energy Economics, Elsevier, vol. 65(C), pages 194-207.
    23. Fuentes González, Fabián & Sauma, Enzo & van der Weijde, Adriaan Hendrik, 2022. "Community energy projects in the context of generation and transmission expansion planning," Energy Economics, Elsevier, vol. 108(C).
    24. Bushnell, James B. & Stoft, Steven E., 1997. "Improving private incentives for electric grid investment," Resource and Energy Economics, Elsevier, vol. 19(1-2), pages 85-108, March.
    25. Nagarajan, Mahesh & Sosic, Greys, 2008. "Game-theoretic analysis of cooperation among supply chain agents: Review and extensions," European Journal of Operational Research, Elsevier, vol. 187(3), pages 719-745, June.
    26. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    27. Midttun, Atle & Thomas, Steve, 1998. "Theoretical ambiguity and the weight of historical heritage: a comparative study of the British and Norwegian electricity liberalisation," Energy Policy, Elsevier, vol. 26(3), pages 179-197, February.
    28. Lin, Jiang & Kahrl, Fredrich & Yuan, Jiahai & Liu, Xu & Zhang, Weirong, 2019. "Challenges and strategies for electricity market transition in China," Energy Policy, Elsevier, vol. 133(C).
    29. Hanspeter Höschle & Hélène le Cadre, & Yves Smeers & Anthony Papavasiliou & Ronnie Belmans, 2018. "An ADMM-based method for computing risk-averse equilibrium in capacity markets," LIDAM Reprints CORE 3020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    30. Hesamzadeh, M.R. & Rosellón, J. & Gabriel, S.A. & Vogelsang, I., 2018. "A simple regulatory incentive mechanism applied to electricity transmission pricing and investment," Energy Economics, Elsevier, vol. 75(C), pages 423-439.
    31. Li, Can & Conejo, Antonio J. & Liu, Peng & Omell, Benjamin P. & Siirola, John D. & Grossmann, Ignacio E., 2022. "Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1071-1082.
    32. Zheng, Weiye & Lu, Hao & Zhu, Jizhong, 2023. "Incentivizing cooperative electricity-heat operation: A distributed asymmetric Nash bargaining mechanism," Energy, Elsevier, vol. 280(C).
    33. Pozo, David & Sauma, Enzo & Contreras, Javier, 2017. "When doing nothing may be the best investment action: Pessimistic anticipative power transmission planning," Applied Energy, Elsevier, vol. 200(C), pages 383-398.
    34. Biggar, Darryl, 2022. "Seven outstanding issues in energy network regulation," Energy Economics, Elsevier, vol. 115(C).
    35. Paolo Pisciella & Marida Bertocchi & Maria Vespucci, 2016. "A leader-followers model of power transmission capacity expansion in a market driven environment," Computational Management Science, Springer, vol. 13(1), pages 87-118, January.
    36. Chao, Hung-Po & Peck, Stephen, 1996. "A Market Mechanism for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 10(1), pages 25-59, July.
    37. Ignacio Pérez-Arriaga & Luis Olmos, 2006. "Compatibility of Investment Signals in Distribution, Transmission and Generation," Chapters, in: François Lévêque (ed.), Competitive Electricity Markets and Sustainability, chapter 7, Edward Elgar Publishing.
    38. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    39. Gonzalez-Romero, Isaac-Camilo & Wogrin, Sonja & Gomez, Tomas, 2021. "Transmission and storage expansion planning under imperfect market competition: Social planner versus merchant investor," Energy Economics, Elsevier, vol. 103(C).
    40. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2021. "The impact of market design on transmission and generation investment in electricity markets," Energy Economics, Elsevier, vol. 93(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makoto TANAKA, 2005. "Optimal Transmission Capacity under Nodal Pricing and Incentive Regulation for Transco," Discussion papers 05021, Research Institute of Economy, Trade and Industry (RIETI).
    2. Xia, Yuxin & Savelli, Iacopo & Morstyn, Thomas, 2025. "Integrating local market operations into transmission investment: A tri-level optimization approach," Applied Energy, Elsevier, vol. 378(PA).
    3. Ingo Vogelsang, 2018. "Can Simple Regulatory Mechanisms Realistically be used for Electricity Transmission Investment? The Case of H-R-G-V," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    4. Juan Rosellón, 2009. "Mechanisms for the Optimal Expansion of Electricity Transmission Networks," Chapters, in: Joanne Evans & Lester C. Hunt (ed.), International Handbook on the Economics of Energy, chapter 24, Edward Elgar Publishing.
    5. repec:diw:diwwpp:dp1025 is not listed on IDEAS
    6. Ingo Vogelsang, 2006. "Electricity Transmission Pricing and Performance-based Regulation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 97-126.
    7. Stephen Littlechild, 2012. "Merchant and regulated transmission: theory, evidence and policy," Journal of Regulatory Economics, Springer, vol. 42(3), pages 308-335, December.
    8. William Hogan & Juan Rosellón & Ingo Vogelsang, 2010. "Toward a combined merchant-regulatory mechanism for electricity transmission expansion," Journal of Regulatory Economics, Springer, vol. 38(2), pages 113-143, October.
    9. Benjamin, Richard, 2007. "Principles for Interregional Transmission Expansion," The Electricity Journal, Elsevier, vol. 20(8), pages 36-47, October.
    10. Biggar, Darryl R. & Hesamzadeh, Mohammad Reza, 2022. "An integrated theory of dispatch and hedging in wholesale electric power markets," Energy Economics, Elsevier, vol. 112(C).
    11. Paul Joskow & Jean Tirole, 2005. "Merchant Transmission Investment," Journal of Industrial Economics, Wiley Blackwell, vol. 53(2), pages 233-264, June.
    12. Stephen C. Littlechild & Carlos J. Skerk, 2004. "Regulation of transmission expansion in Argentina Part I: State ownership, reform and the Fourth Line," Working Papers EP61, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Varawala, Lamia & Hesamzadeh, Mohammad Reza & Dán, György & Bunn, Derek & Rosellón, Juan, 2023. "A pricing mechanism to jointly mitigate market power and environmental externalities in electricity markets," Energy Economics, Elsevier, vol. 121(C).
    14. Littlechild, Stephen C. & Skerk, Carlos J., 2008. "Transmission expansion in Argentina 2: The Fourth Line revisited," Energy Economics, Elsevier, vol. 30(4), pages 1385-1419, July.
    15. Biggar, Darryl, 2022. "Seven outstanding issues in energy network regulation," Energy Economics, Elsevier, vol. 115(C).
    16. Juan Rosellón, Ingo Vogelsang, and Hannes Weigt, 2012. "Long-run Cost Functions for Electricity Transmission," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    17. Matsukawa, Isamu, 2008. "The effects of average revenue regulation on electricity transmission investment and pricing," Energy Economics, Elsevier, vol. 30(3), pages 696-714, May.
    18. Chao, Hung-po & Wilson, Robert, 2020. "Coordination of electricity transmission and generation investments," Energy Economics, Elsevier, vol. 86(C).
    19. Rosellon, Juan & Tregear, Juan & Zenon, Eric, 2010. "El modelo HRV para expansión óptima de redes de transmisión: una aplicación a la red eléctrica de Ontario [The HRV Model for the Optimal Expansion of Transmission Networks: an Application to the On," MPRA Paper 26471, University Library of Munich, Germany.
    20. Richard O’Neill & Emily Fisher & Benjamin Hobbs & Ross Baldick, 2008. "Towards a complete real-time electricity market design," Journal of Regulatory Economics, Springer, vol. 34(3), pages 220-250, December.
    21. Benjamin, Richard, 2013. "A two-part tariff for financing transmission expansion," Utilities Policy, Elsevier, vol. 27(C), pages 98-107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.