IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipbs0360544223013749.html
   My bibliography  Save this article

Asymmetric Nash bargaining model for peer-to-peer energy transactions combined with shared energy storage

Author

Listed:
  • Chen, Yujia
  • Pei, Wei
  • Ma, Tengfei
  • Xiao, Hao

Abstract

Distributed peer-to-peer (P2P) energy trading can promote the localized balancing of power supply and demand, improve grid utilization efficiency, and ensure fairness. Shared energy storage (SES) enables users to withdraw electrical energy from shared batteries. This paper proposes a P2P energy trading model combined with SES and studies a cooperative surplus distribution mechanism based on the asymmetric Nash bargaining (ANB) theory. First, a cooperative model is established for enabling cooperation among sellers and buyers in a P2P energy trading system, offering a cooperative surplus due to cooperation. Secondly, by using the Asymmetric Nash Bargaining theory, a profit distribution model for the participants is constructed to ensure that the cooperation surplus can be fairly distributed among buyers and sellers. Finally, case studies are presented to verify the effectiveness of the proposed model. The simulation results show that the proposed cooperative method can improve the benefits of each entity and the overall benefits of the cooperative alliance. The proposed profit distribution model can reflect the difference in the contributions of sellers and buyers in the P2P energy trading system and fairly distribute the cooperation surplus. Furthermore, SES can improve the overall economics of DGs and consumers.

Suggested Citation

  • Chen, Yujia & Pei, Wei & Ma, Tengfei & Xiao, Hao, 2023. "Asymmetric Nash bargaining model for peer-to-peer energy transactions combined with shared energy storage," Energy, Elsevier, vol. 278(PB).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223013749
    DOI: 10.1016/j.energy.2023.127980
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223013749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127980?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Wenzhi & Xiao, Jiang-Wen & Cui, Shi-Chang & Liu, Xiao-Kang, 2022. "An efficient and economical storage and energy sharing model for multiple multi-energy microgrids," Energy, Elsevier, vol. 244(PB).
    2. Walker, Awnalisa & Kwon, Soongeol, 2021. "Analysis on impact of shared energy storage in residential community: Individual versus shared energy storage," Applied Energy, Elsevier, vol. 282(PA).
    3. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Markovska, Natasa & Georghiou, George E., 2022. "Virtual net-billing: A fair energy sharing method for collective self-consumption," Energy, Elsevier, vol. 254(PB).
    4. Zhang, Wen-Yi & Chen, Yue & Wang, Yi & Xu, Yunjian, 2023. "Equilibrium analysis of a peer-to-peer energy trading market with shared energy storage in a power transmission grid," Energy, Elsevier, vol. 274(C).
    5. Robu, Valentin & Chalkiadakis, Georgios & Kota, Ramachandra & Rogers, Alex & Jennings, Nicholas R., 2016. "Rewarding cooperative virtual power plant formation using scoring rules," Energy, Elsevier, vol. 117(P1), pages 19-28.
    6. Giotitsas, Chris & Pazaitis, Alex & Kostakis, Vasilis, 2015. "A peer-to-peer approach to energy production," Technology in Society, Elsevier, vol. 42(C), pages 28-38.
    7. Xiao, Hao & Pei, Wei & Wu, Lei & Ma, Li & Ma, Tengfei & Hua, Weiqi, 2023. "A novel deep learning based probabilistic power flow method for Multi-Microgrids distribution system with incomplete network information," Applied Energy, Elsevier, vol. 335(C).
    8. Niveditha, N. & Rajan Singaravel, M.M., 2022. "Optimal sizing of hybrid PV–Wind–Battery storage system for Net Zero Energy Buildings to reduce grid burden," Applied Energy, Elsevier, vol. 324(C).
    9. Ma, Tengfei & Pei, Wei & Deng, Wei & Xiao, Hao & Yang, Yanhong & Tang, Chenghong, 2022. "A Nash bargaining-based cooperative planning and operation method for wind-hydrogen-heat multi-agent energy system," Energy, Elsevier, vol. 239(PE).
    10. Jafari, Amirreza & Ganjeh Ganjehlou, Hamed & Khalili, Tohid & Bidram, Ali, 2020. "A fair electricity market strategy for energy management and reliability enhancement of islanded multi-microgrids," Applied Energy, Elsevier, vol. 270(C).
    11. Haider, Sajjad & Rizvi, Rida e Zahra & Walewski, John & Schegner, Peter, 2022. "Investigating peer-to-peer power transactions for reducing EV induced network congestion," Energy, Elsevier, vol. 254(PB).
    12. Zhang, Wenyi & Wei, Wei & Chen, Laijun & Zheng, Boshen & Mei, Shengwei, 2020. "Service pricing and load dispatch of residential shared energy storage unit," Energy, Elsevier, vol. 202(C).
    13. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Nash bargaining based collaborative energy management for regional integrated energy systems in uncertain electricity markets," Energy, Elsevier, vol. 269(C).
    14. Zhang, Chenghua & Wu, Jianzhong & Zhou, Yue & Cheng, Meng & Long, Chao, 2018. "Peer-to-Peer energy trading in a Microgrid," Applied Energy, Elsevier, vol. 220(C), pages 1-12.
    15. Liu, Jingkun & Zhang, Ning & Kang, Chongqing & Kirschen, Daniel & Xia, Qing, 2017. "Cloud energy storage for residential and small commercial consumers: A business case study," Applied Energy, Elsevier, vol. 188(C), pages 226-236.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Yuanxing & Xu, Qingshan & Fang, Jicheng & Tang, Rongchuan & Du, Pengwei, 2024. "Bipartite graph-based community-to-community matching in local energy market considering socially networked prosumers," Applied Energy, Elsevier, vol. 353(PB).
    2. Hu, Junjie & Wang, Yudong & Dong, Lei, 2024. "Low carbon-oriented planning of shared energy storage station for multiple integrated energy systems considering energy-carbon flow and carbon emission reduction," Energy, Elsevier, vol. 290(C).
    3. Hussain, Sadam & Azim, M. Imran & Lai, Chunyan & Eicker, Ursula, 2023. "New coordination framework for smart home peer-to-peer trading to reduce impact on distribution transformer," Energy, Elsevier, vol. 284(C).
    4. Cai, Pengcheng & Mi, Yang & Ma, Siyuan & Li, Hongzhong & Li, Dongdong & Wang, Peng, 2023. "Hierarchical game for integrated energy system and electricity-hydrogen hybrid charging station under distributionally robust optimization," Energy, Elsevier, vol. 283(C).
    5. He, Ye & Wu, Hongbin & Wu, Andrew Y. & Li, Peng & Ding, Ming, 2024. "Optimized shared energy storage in a peer-to-peer energy trading market: Two-stage strategic model regards bargaining and evolutionary game theory," Renewable Energy, Elsevier, vol. 224(C).
    6. Wang, Zhuo & Hou, Hui & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Xie, Changjun, 2024. "Risk-averse stochastic capacity planning and P2P trading collaborative optimization for multi-energy microgrids considering carbon emission limitations: An asymmetric Nash bargaining approach," Applied Energy, Elsevier, vol. 357(C).
    7. Wang, Yifeng & Jiang, Aihua & Wang, Rui & Tian, Junyang, 2024. "A canonical coalitional game model incorporating motivational psychology analysis for incentivizing stable direct energy trading in smart grid," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Boshen & Wei, Wei & Chen, Yue & Wu, Qiuwei & Mei, Shengwei, 2022. "A peer-to-peer energy trading market embedded with residential shared energy storage units," Applied Energy, Elsevier, vol. 308(C).
    2. Li, Qi & Xiao, Xukang & Pu, Yuchen & Luo, Shuyu & Liu, Hong & Chen, Weirong, 2023. "Hierarchical optimal scheduling method for regional integrated energy systems considering electricity-hydrogen shared energy," Applied Energy, Elsevier, vol. 349(C).
    3. Zhaonian Ye & Yongzhen Wang & Kai Han & Changlu Zhao & Juntao Han & Yilin Zhu, 2023. "Bi-Objective Optimization and Emergy Analysis of Multi-Distributed Energy System Considering Shared Energy Storage," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    4. Zhang, Wen-Yi & Chen, Yue & Wang, Yi & Xu, Yunjian, 2023. "Equilibrium analysis of a peer-to-peer energy trading market with shared energy storage in a power transmission grid," Energy, Elsevier, vol. 274(C).
    5. Chang, Weiguang & Dong, Wei & Yang, Qiang, 2023. "Day-ahead bidding strategy of cloud energy storage serving multiple heterogeneous microgrids in the electricity market," Applied Energy, Elsevier, vol. 336(C).
    6. He, Ye & Wu, Hongbin & Wu, Andrew Y. & Li, Peng & Ding, Ming, 2024. "Optimized shared energy storage in a peer-to-peer energy trading market: Two-stage strategic model regards bargaining and evolutionary game theory," Renewable Energy, Elsevier, vol. 224(C).
    7. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Nash bargaining based collaborative energy management for regional integrated energy systems in uncertain electricity markets," Energy, Elsevier, vol. 269(C).
    8. Zhang, Shixu & Li, Yaowang & Du, Ershun & Fan, Chuan & Wu, Zhenlong & Yao, Yong & Liu, Lurao & Zhang, Ning, 2023. "A review and outlook on cloud energy storage: An aggregated and shared utilizing method of energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    9. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    10. Cai, Pengcheng & Mi, Yang & Ma, Siyuan & Li, Hongzhong & Li, Dongdong & Wang, Peng, 2023. "Hierarchical game for integrated energy system and electricity-hydrogen hybrid charging station under distributionally robust optimization," Energy, Elsevier, vol. 283(C).
    11. Xianan Jiao & Jiekang Wu & Yunshou Mao & Weiming Luo & Mengxuan Yan, 2023. "An Optimal Method of Energy Management for Regional Energy System with a Shared Energy Storage," Energies, MDPI, vol. 16(2), pages 1-21, January.
    12. Jing Yu & Jicheng Liu & Yajing Wen & Xue Yu, 2023. "Economic Optimal Coordinated Dispatch of Power for Community Users Considering Shared Energy Storage and Demand Response under Blockchain," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    13. Wang, Chutong & Zhang, Xiaoyan & Wang, Yucui & Xiong, Houbo & Ding, Xi & Guo, Chuangxin, 2023. "Pricing method of electric-thermal heterogeneous shared energy storage service," Energy, Elsevier, vol. 281(C).
    14. Lüth, Alexandra & Zepter, Jan Martin & Crespo del Granado, Pedro & Egging, Ruud, 2018. "Local electricity market designs for peer-to-peer trading: The role of battery flexibility," Applied Energy, Elsevier, vol. 229(C), pages 1233-1243.
    15. Henri van Soest, 2018. "Peer-to-peer electricity trading: A review of the legal context," Competition and Regulation in Network Industries, , vol. 19(3-4), pages 180-199, September.
    16. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Markovska, Natasa & Georghiou, George E., 2022. "Virtual net-billing: A fair energy sharing method for collective self-consumption," Energy, Elsevier, vol. 254(PB).
    17. Di Liu & Junwei Cao & Mingshuang Liu, 2022. "Joint Optimization of Energy Storage Sharing and Demand Response in Microgrid Considering Multiple Uncertainties," Energies, MDPI, vol. 15(9), pages 1-20, April.
    18. Meritxell Domènech Monfort & César De Jesús & Natapon Wanapinit & Niklas Hartmann, 2022. "A Review of Peer-to-Peer Energy Trading with Standard Terminology Proposal and a Techno-Economic Characterisation Matrix," Energies, MDPI, vol. 15(23), pages 1-29, November.
    19. Gržanić, M. & Capuder, T. & Zhang, N. & Huang, W., 2022. "Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Kobashi, Takuro & Yoshida, Takahiro & Yamagata, Yoshiki & Naito, Katsuhiko & Pfenninger, Stefan & Say, Kelvin & Takeda, Yasuhiro & Ahl, Amanda & Yarime, Masaru & Hara, Keishiro, 2020. "On the potential of “Photovoltaics + Electric vehicles” for deep decarbonization of Kyoto’s power systems: Techno-economic-social considerations," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223013749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.