IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4270-d1651627.html
   My bibliography  Save this article

Consider Demand Response and Power-Sharing Source-Storage-Load Three-Level Game Models

Author

Listed:
  • Fuyi Zou

    (Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, School of Electrical & Electronic Engineering, Hubei University of Technology, Wuhan 430068, China)

  • Hui He

    (Changjiang Engineering Group, Wuhan 430010, China)

  • Xiang Liao

    (Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, School of Electrical & Electronic Engineering, Hubei University of Technology, Wuhan 430068, China)

  • Ke Liu

    (Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, School of Electrical & Electronic Engineering, Hubei University of Technology, Wuhan 430068, China)

  • Shuo Ouyang

    (Hydrology Bureau of Yangtze River Water Resources Commission, Wuhan 430000, China)

  • Li Mo

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Wei Huang

    (Hubei Energy Group New Energy Development Co., Wuhan 430077, China)

Abstract

With the increasing connection between integrated natural gas, thermal energy, and electric power systems, the integrated energy system (IES) needs to coordinate the internal unit scheduling and meet the different load demands of customers. However, when the energy subjects involved in scheduling are engaged in conflicts of interest, aspects such as hierarchical status relationships and cooperative and competitive relationships must be considered. Therefore, this paper studies the problem of achieving optimal energy scheduling for multiple subjects of source, storage, and load under the same distribution network while ensuring that their benefits are not impaired. First, this paper establishes a dual master-slave game model with a shared energy storage system (SESS), IES, and the alliance of prosumers (APs) as the main subjects. Second, based on the Nash negotiation theory and considering the sharing of electric energy among prosumers, the APs model is equated into two sub-problems of coalition cost minimization and cooperative benefit distribution to ensure that the coalition members distribute the cooperative benefits equitably. Further, the Stackelberg-Stackelberg-Nash three-layer game model is established, and the dichotomous distributed optimization algorithm combined with the alternating direction multiplier method (ADMM) is used to solve this three-layer game model. Finally, in the simulation results of the arithmetic example, the natural gas consumption is reduced by 9.32%, the economic efficiency of IES is improved by 3.95%, and the comprehensive energy purchase cost of APs is reduced by 12.16%, the proposed model verifies the sustainability co-optimization and mutual benefits of source, storage and load multi-interested subjects.

Suggested Citation

  • Fuyi Zou & Hui He & Xiang Liao & Ke Liu & Shuo Ouyang & Li Mo & Wei Huang, 2025. "Consider Demand Response and Power-Sharing Source-Storage-Load Three-Level Game Models," Sustainability, MDPI, vol. 17(10), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4270-:d:1651627
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4270/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4270/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ullah, Md Habib & Park, Jae-Do, 2022. "DLMP integrated P2P2G energy trading in distribution-level grid-interactive transactive energy systems," Applied Energy, Elsevier, vol. 312(C).
    2. Milan, Christian & Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman, 2015. "Modeling of non-linear CHP efficiency curves in distributed energy systems," Applied Energy, Elsevier, vol. 148(C), pages 334-347.
    3. Wang, Yongli & Liu, Zhen & Wang, Jingyan & Du, Boxin & Qin, Yumeng & Liu, Xiaoli & Liu, Lin, 2023. "A Stackelberg game-based approach to transaction optimization for distributed integrated energy system," Energy, Elsevier, vol. 283(C).
    4. Chen, Changming & Wu, Xueyan & Li, Yan & Zhu, Xiaojun & Li, Zesen & Ma, Jien & Qiu, Weiqiang & Liu, Chang & Lin, Zhenzhi & Yang, Li & Wang, Qin & Ding, Yi, 2021. "Distributionally robust day-ahead scheduling of park-level integrated energy system considering generalized energy storages," Applied Energy, Elsevier, vol. 302(C).
    5. Ao, Xuan & Zhang, Jing & Yan, Rujing & He, Yu & Long, Chuanyu & Geng, Xianxian & Zhang, Yan & Fan, Junqiu & Liu, Tianhao, 2025. "More flexibility and waste heat recovery of a combined heat and power system for renewable consumption and higher efficiency," Energy, Elsevier, vol. 315(C).
    6. Fan Wang & Xiang Liao & Na Fang & Zhiqiang Jiang, 2022. "Optimal Scheduling of Regional Combined Heat and Power System Based on Improved MFO Algorithm," Energies, MDPI, vol. 15(9), pages 1-30, May.
    7. Wang, Yifei & Wang, Xiuli & Shao, Chengcheng & Gong, Naiwei, 2020. "Distributed energy trading for an integrated energy system and electric vehicle charging stations: A Nash bargaining game approach," Renewable Energy, Elsevier, vol. 155(C), pages 513-530.
    8. Fan, Junqiu & Yan, Rujing & He, Yu & Zhang, Jing & Zhao, Weixing & Liu, Mingshun & An, Su & Ma, Qingfeng, 2025. "Stochastic optimization of combined energy and computation task scheduling strategies of hybrid system with multi-energy storage system and data center," Renewable Energy, Elsevier, vol. 242(C).
    9. Haase, Patrick & Thomas, Bernd, 2021. "Test and optimization of a control algorithm for demand-oriented operation of CHP units using hardware-in-the-loop," Applied Energy, Elsevier, vol. 294(C).
    10. Tan, Jinjing & Li, Yang & Zhang, Xiaoping & Pan, Weiqi & Ruan, Wenjun, 2023. "Operation of a commercial district integrated energy system considering dynamic integrated demand response: A Stackelberg game approach," Energy, Elsevier, vol. 274(C).
    11. Li, Peng & Wang, Zixuan & Yang, Weihong & Liu, Haitao & Yin, Yunxing & Wang, Jiahao & Guo, Tianyu, 2021. "Hierarchically partitioned coordinated operation of distributed integrated energy system based on a master-slave game," Energy, Elsevier, vol. 214(C).
    12. Wang, Yudong & Hu, Junjie, 2023. "Two-stage energy management method of integrated energy system considering pre-transaction behavior of energy service provider and users," Energy, Elsevier, vol. 271(C).
    13. Liu, Zhi-Feng & Zhao, Shi-Xiang & Luo, Xing-Fu & Huang, Ya-He & Gu, Rui-Zheng & Li, Ji-Xiang & Li, Ling-Ling, 2025. "Two-layer energy dispatching and collaborative optimization of regional integrated energy system considering stakeholders game and flexible load management," Applied Energy, Elsevier, vol. 379(C).
    14. Xiang Liao & Beibei Qian & Zhiqiang Jiang & Bo Fu & Hui He, 2023. "Integrated Energy Station Optimal Dispatching Using a Novel Many-Objective Optimization Algorithm Based on Multiple Update Strategies," Energies, MDPI, vol. 16(13), pages 1-26, July.
    15. Jiang, Aihua & Yuan, Huihong & Li, Delong, 2021. "Energy management for a community-level integrated energy system with photovoltaic prosumers based on bargaining theory," Energy, Elsevier, vol. 225(C).
    16. Li, Ruizhi & Yan, Xiaohe & Liu, Nian, 2022. "Hybrid energy sharing considering network cost for prosumers in integrated energy systems," Applied Energy, Elsevier, vol. 323(C).
    17. Ke Liu & Hui He & Xiang Liao & Fuyi Zou & Wei Huang & Chaoshun Li, 2025. "Optimization of Renewable Energy Sharing for Electric Vehicle Integrated Energy Stations and High-Rise Buildings Considering Economic and Environmental Factors," Sustainability, MDPI, vol. 17(7), pages 1-33, April.
    18. Kotowicz, Janusz & Uchman, Wojciech, 2021. "Analysis of the integrated energy system in residential scale: Photovoltaics, micro-cogeneration and electrical energy storage," Energy, Elsevier, vol. 227(C).
    19. Peng, Shiyun & Liu, Sha & Wu, Xiao, 2025. "Optimal scheduling of integrated energy system considering exergoeconomic performance," Energy, Elsevier, vol. 320(C).
    20. Wang, Yongli & Liu, Zhen & Cai, Chengcong & Xue, Lu & Ma, Yang & Shen, Hekun & Chen, Xin & Liu, Lin, 2022. "Research on the optimization method of integrated energy system operation with multi-subject game," Energy, Elsevier, vol. 245(C).
    21. Li, Xin & Wu, Xian & Gui, De & Hua, Yawen & Guo, Panfeng, 2021. "Power system planning based on CSP-CHP system to integrate variable renewable energy," Energy, Elsevier, vol. 232(C).
    22. Chen, Yujia & Pei, Wei & Ma, Tengfei & Xiao, Hao, 2023. "Asymmetric Nash bargaining model for peer-to-peer energy transactions combined with shared energy storage," Energy, Elsevier, vol. 278(PB).
    23. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    24. Kühnbach, Matthias & Bekk, Anke & Weidlich, Anke, 2022. "Towards improved prosumer participation: Electricity trading in local markets," Energy, Elsevier, vol. 239(PE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xun & Shao, Zhenguo & Chen, Feixiong & Cheng, Guoyang, 2024. "Multi-game optimization operation strategy for integrated energy system considering spatiotemporal correlation of renewable energy," Energy, Elsevier, vol. 303(C).
    2. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    3. Liu, Zhi-Feng & Luo, Xing-Fu & Chen, Xiao-Rui & Huang, Ya-He & Liu, You-Yuan & Tang, Yu & Kang, Qing & Guo, Liang, 2024. "An innovative bi-level scheduling model with hydrogen-thermal-electricity co-supply and dynamic carbon capture strategies for regional integrated energy systems considering hybrid games," Renewable Energy, Elsevier, vol. 237(PB).
    4. Li, Xinyan & Wu, Nan, 2024. "A two-stage distributed robust optimal control strategy for energy collaboration in multi-regional integrated energy systems based on cooperative game," Energy, Elsevier, vol. 305(C).
    5. Gao, Jin & Shao, Zhenguo & Chen, Feixiong & Lak, Mohammadreza, 2024. "Robust optimization for integrated energy systems based on multi-energy trading," Energy, Elsevier, vol. 308(C).
    6. Yang, Yulong & Zhao, Yang & Yan, Gangui & Mu, Gang & Chen, Zhe, 2024. "Real time aggregation control of P2H loads in a virtual power plant based on a multi-period stackelberg game," Energy, Elsevier, vol. 303(C).
    7. Qi, Xin & Ju, Liwei & Yang, Shenbo & Gan, Wei & Li, Gen & Bai, Xiping, 2025. "A bi-level peer-to-peer interactive trading optimization model and distributed solution algorithm for rural distributed energy system group based on Stackelberg-Nash game strategy," Energy, Elsevier, vol. 318(C).
    8. Peng Liu & Tieyan Zhang & Furui Tian & Yun Teng & Miaodong Yang, 2024. "Hybrid Decision Support Framework for Energy Scheduling Using Stochastic Optimization and Cooperative Game Theory," Energies, MDPI, vol. 17(24), pages 1-20, December.
    9. Cai, Pengcheng & Mi, Yang & Ma, Siyuan & Li, Hongzhong & Li, Dongdong & Wang, Peng, 2023. "Hierarchical game for integrated energy system and electricity-hydrogen hybrid charging station under distributionally robust optimization," Energy, Elsevier, vol. 283(C).
    10. Liang, Ziwen & Mu, Longhua, 2024. "Multi-agent low-carbon optimal dispatch of regional integrated energy system based on mixed game theory," Energy, Elsevier, vol. 295(C).
    11. Uda Bala & Wei Li & Wenguo Wang & Yuying Gong & Yaheng Su & Yingshu Liu & Yi Zhang & Wei Wang, 2024. "The Sharing Energy Storage Mechanism for Demand Side Energy Communities," Energies, MDPI, vol. 17(21), pages 1-19, October.
    12. Wang, Hao-ran & Feng, Tian-tian & Xiong, Wei, 2022. "How can the dynamic game be integrated into blockchain-based distributed energy resources multi-agent transactions for decision-making?," Energy, Elsevier, vol. 254(PB).
    13. Wang, Yifeng & Jiang, Aihua & Wang, Rui & Tian, Junyang, 2024. "A canonical coalitional game model incorporating motivational psychology analysis for incentivizing stable direct energy trading in smart grid," Energy, Elsevier, vol. 289(C).
    14. Wang, Yi & Jin, Zikang & Liang, Jing & Li, Zhongwen & Dinavahi, Venkata & Liang, Jun, 2024. "Low-carbon optimal scheduling of park-integrated energy system based on bidirectional Stackelberg-Nash game theory," Energy, Elsevier, vol. 305(C).
    15. Hu, Junjie & Wang, Yudong & Dong, Lei, 2024. "Low carbon-oriented planning of shared energy storage station for multiple integrated energy systems considering energy-carbon flow and carbon emission reduction," Energy, Elsevier, vol. 290(C).
    16. Liu, Xinrui & Li, Ming & Wang, Rui & Feng, Junbo & Dong, Chaoyu & Sun, Qiuye, 2024. "Low-carbon operation of multi-virtual power plants with hydrogen doping and load aggregator based on bilateral cooperative game," Energy, Elsevier, vol. 309(C).
    17. Yang, Ting & Wang, Qiancheng & Wang, Xudong & Wang, Lin & Geng, Yinan, 2025. "Low-carbon economic distributed dispatch for district-level integrated energy system considering privacy protection and demand response," Applied Energy, Elsevier, vol. 383(C).
    18. Yang, Peiwen & Fang, Debin & Wang, Shuyi, 2022. "Optimal trading mechanism for prosumer-centric local energy markets considering deviation assessment," Applied Energy, Elsevier, vol. 325(C).
    19. Jiang, Qian & Jia, Hongjie & Mu, Yunfei & Yu, Xiaodan & Wang, Zibo, 2024. "Bilateral planning and operation for integrated energy service provider and prosumers - A Nash bargaining-based method," Applied Energy, Elsevier, vol. 368(C).
    20. Wang, Zhuo & Hou, Hui & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Xie, Changjun, 2024. "Risk-averse stochastic capacity planning and P2P trading collaborative optimization for multi-energy microgrids considering carbon emission limitations: An asymmetric Nash bargaining approach," Applied Energy, Elsevier, vol. 357(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4270-:d:1651627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.