IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v380y2025ics030626192402347x.html
   My bibliography  Save this article

An hourly-resolution capacity sharing market for generation-side clustered renewable-storage plants

Author

Listed:
  • Wang, Chuan
  • Wei, Wei
  • Chen, Laijun
  • Gong, Yuan
  • Mei, Shengwei

Abstract

With the increasing penetration of renewable energy on the generation side, their volatility greatly challenges power balancing in the power grids. Deploying energy storage in wind farms, solar stations, and collection stations allow renewable plants to sell energy guided by the electricity price signal and increase their market revenues. This paper considers a representative scenario on the generation side. Wind farms and solar stations managed by different entities sell energy to a market through a collection station, aiming to maximize individual profits. Each renewable plant is equipped with a local battery in order to store energy and wait for a higher price. They can also rent some capacity from a shared energy storage unit at the collection station for better profitability. This paper designs a day-ahead hourly-resolution capacity rental market for the shared energy storage in the collection station and proposes an online operation policy for individual renewable plants. In the day-ahead market, renewable plants bid their needs of storage capacity in each time period based on the rental price and a batch of renewable power scenarios in the next day, and then the market is cleared at the Stackelberg equilibrium where the shared storage acts as the leader. Given the capacity obtained from the day-ahead market, each renewable plant obtains reference storage level trajectories in the pre-specified scenarios as experiences. In the real-time stage, the dispatch of local and shared storage units is determined from the conditional expectation of experiences, where the conditional distribution is generated by kernel regression using dynamic time warping as the distance measure. This proposed method does not rely on renewable power forecasts and is easy to implement. Numerical results validate the economy of the proposed method. Compared to the autarky mode, the profit of a renewable plant is increased by 40.6% on average. Compared to the ideal optimum, the optimality gap of the proposed method is 1.4% on average.

Suggested Citation

  • Wang, Chuan & Wei, Wei & Chen, Laijun & Gong, Yuan & Mei, Shengwei, 2025. "An hourly-resolution capacity sharing market for generation-side clustered renewable-storage plants," Applied Energy, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:appene:v:380:y:2025:i:c:s030626192402347x
    DOI: 10.1016/j.apenergy.2024.124964
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192402347X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124964?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiong, Houbo & Zhou, Yue & Guo, Chuangxin & Ding, Yi & Luo, Fengji, 2023. "Multi-stage risk-based assessment for wind energy accommodation capability: A robust and non-anticipative method," Applied Energy, Elsevier, vol. 350(C).
    2. Chen, Yujia & Pei, Wei & Ma, Tengfei & Xiao, Hao, 2023. "Asymmetric Nash bargaining model for peer-to-peer energy transactions combined with shared energy storage," Energy, Elsevier, vol. 278(PB).
    3. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    4. Xiao, Jiang-Wen & Yang, Yan-Bing & Cui, Shichang & Liu, Xiao-Kang, 2022. "A new energy storage sharing framework with regard to both storage capacity and power capacity," Applied Energy, Elsevier, vol. 307(C).
    5. Álvaro Lorca & X. Andy Sun & Eugene Litvinov & Tongxin Zheng, 2016. "Multistage Adaptive Robust Optimization for the Unit Commitment Problem," Operations Research, INFORMS, vol. 64(1), pages 32-51, February.
    6. Sun, Lingling & Qiu, Jing & Han, Xiao & Yin, Xia & Dong, Zhao Yang, 2020. "Capacity and energy sharing platform with hybrid energy storage system: An example of hospitality industry," Applied Energy, Elsevier, vol. 280(C).
    7. Ciara O'Dwyer & L. (Lisa B.) Ryan & Damian Flynn, 2017. "Efficient large-scale energy storage dispatch: challenges in future high renewables systems," Open Access publications 10197/9103, School of Economics, University College Dublin.
    8. He, Li & Liu, Yuanzhi & Zhang, Jie, 2021. "Peer-to-peer energy sharing with battery storage: Energy pawn in the smart grid," Applied Energy, Elsevier, vol. 297(C).
    9. He, Ye & Wu, Hongbin & Wu, Andrew Y. & Li, Peng & Ding, Ming, 2024. "Optimized shared energy storage in a peer-to-peer energy trading market: Two-stage strategic model regards bargaining and evolutionary game theory," Renewable Energy, Elsevier, vol. 224(C).
    10. Qiu, Haifeng & Sun, Qirun & Lu, Xi & Beng Gooi, Hoay & Zhang, Suhan, 2022. "Optimality-feasibility-aware multistage unit commitment considering nonanticipative realization of uncertainty," Applied Energy, Elsevier, vol. 327(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Xiaoling & Wu, Han & Zhang, Huqing & Guo, Jianxin & Zhang, Zhe & Peña-Mora, Feniosky, 2025. "Can retail electricity pricing promote microgrid operators to leverage shared energy storage services among internal aggregators?," Energy, Elsevier, vol. 314(C).
    2. He, Ye & Wu, Hongbin & Wu, Andrew Y. & Li, Peng & Ding, Ming, 2024. "Optimized shared energy storage in a peer-to-peer energy trading market: Two-stage strategic model regards bargaining and evolutionary game theory," Renewable Energy, Elsevier, vol. 224(C).
    3. Eunsung Oh, 2022. "Fair Virtual Energy Storage System Operation for Smart Energy Communities," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
    4. Jing Yu & Jicheng Liu & Yajing Wen & Xue Yu, 2023. "Economic Optimal Coordinated Dispatch of Power for Community Users Considering Shared Energy Storage and Demand Response under Blockchain," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    5. Hu, Junjie & Wang, Yudong & Dong, Lei, 2024. "Low carbon-oriented planning of shared energy storage station for multiple integrated energy systems considering energy-carbon flow and carbon emission reduction," Energy, Elsevier, vol. 290(C).
    6. He, Yan & Xiao, Jiang-Wen & Wang, Yan-Wu & Liu, Zhi-Wei & He, Shi-Yuan, 2025. "Subjective-uncertainty-oriented dynamic renting framework for energy storage sharing," Applied Energy, Elsevier, vol. 378(PA).
    7. Bian, Yifan & Xie, Lirong & Ma, Lan & Zhang, Hangong, 2024. "A novel two-stage energy sharing method for data center cluster considering ‘Carbon-Green Certificate’ coupling mechanism," Energy, Elsevier, vol. 313(C).
    8. Xiong, Houbo & Zhou, Yue & Guo, Chuangxin & Ding, Yi & Luo, Fengji, 2023. "Multi-stage risk-based assessment for wind energy accommodation capability: A robust and non-anticipative method," Applied Energy, Elsevier, vol. 350(C).
    9. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    10. Elimam, Mohamed & El Moursi, Mohamed Shawki & EL-Fouly, Tarek H.M. & Al-Durra, Ahmed & Al Hosani, Khalifa Hassan, 2025. "Transactive energy trading among multi-microgrids in a distribution network with fair loss sharing," Applied Energy, Elsevier, vol. 381(C).
    11. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    12. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    13. Hossein Lotfi & Mohammad Hasan Nikkhah, 2024. "Multi-Objective Profit-Based Unit Commitment with Renewable Energy and Energy Storage Units Using a Modified Optimization Method," Sustainability, MDPI, vol. 16(4), pages 1-28, February.
    14. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    15. Hossam M. Hussein & Ahmed Aghmadi & Mahmoud S. Abdelrahman & S M Sajjad Hossain Rafin & Osama Mohammed, 2024. "A review of battery state of charge estimation and management systems: Models and future prospective," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(1), January.
    16. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    17. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    18. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Zhou, Zhizuan & Wang, Dong & Peng, Yang & Li, Maoyu & Wang, Boxuan & Cao, Bei & Yang, Lizhong, 2022. "Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery," Energy, Elsevier, vol. 238(PC).
    20. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s030626192402347x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.