IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v271y2022ics0378377422003584.html
   My bibliography  Save this article

Comprehensive evaluation of the water-energy-food nexus in the agricultural management of the Tarim River Basin, Northwest China

Author

Listed:
  • Feng, Meiqing
  • Chen, Yaning
  • Duan, Weili
  • Fang, Gonghuan
  • li, Zhi
  • Jiao, Li
  • Sun, Fan
  • Li, Yupeng
  • Hou, Yifeng

Abstract

The water-energy-food nexus index in the agricultural management of the Tarim River Basin (TRB) is an important index that reflects agricultural inputs productivity. This study used the crop water requirement, energy equivalent, and agricultural water-energy-food nexus index (WEFNI) model to comprehensively evaluate the water and energy consumption, water and energy productivity, and the WEFNI of the main crops (rice, wheat, maize and cotton) in the TRB from 1990 to 2019. The results indicated that different crops had significant differences in water and energy consumption. The blue water requirements of wheat, maize, rice, and cotton were 3174.9 m3 ha−1 yr−1, 4271.8 m3 ha−1 yr−1, 7283.3 m3 ha−1 yr−1 and 8769.3 m3 ha−1 yr−1, respectively. Of these crops, wheat had the lowest blue water requirements and cotton had the highest. In addition, the planting area of the TRB increased by 105 × 104 ha during the study period, with cotton accounting for 45% of the total planting area. The expansion of the planting area led to a continuous improvement in cotton production income, leading to the highest energy economic productivity in cotton (0.065 $/MJ). However, the increase in total water and energy consumption, water and energy mass productivity in cotton were lower than in the other three crops (0.15 kg/m3 and 0.04 kg/MJ). The average WEFNI of rice, wheat, maize and cotton was 0.40, 0.45, 0.43 and 0.35, respectively. This demonstrated that wheat had the highest resources utilization productivity in agricultural inputs, while cotton had the lowest. These results can provide an important scientific basis for current and future agricultural management optimization.

Suggested Citation

  • Feng, Meiqing & Chen, Yaning & Duan, Weili & Fang, Gonghuan & li, Zhi & Jiao, Li & Sun, Fan & Li, Yupeng & Hou, Yifeng, 2022. "Comprehensive evaluation of the water-energy-food nexus in the agricultural management of the Tarim River Basin, Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003584
    DOI: 10.1016/j.agwat.2022.107811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422003584
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wegerich, Kai & Van Rooijen, Daniel & Soliev, Ilkhom & Mukhamedova, Nozilakhon, 2015. "Water Security in the Syr Darya Basin," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7(9), pages 4657-4684.
    2. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    3. Huang, Shaochun & Wortmann, Michel & Duethmann, Doris & Menz, Christoph & Shi, Fengzhi & Zhao, Chengyi & Su, Buda & Krysanova, Valentina, 2018. "Adaptation strategies of agriculture and water management to climate change in the Upper Tarim River basin, NW China," Agricultural Water Management, Elsevier, vol. 203(C), pages 207-224.
    4. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    5. Jamali, Mohsen & Soufizadeh, Saeid & Yeganeh, Bijan & Emam, Yahya, 2021. "A comparative study of irrigation techniques for energy flow and greenhouse gas (GHG) emissions in wheat agroecosystems under contrasting environments in south of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Zuo, Qiting & Wu, Qingsong & Yu, Lei & Li, Yongping & Fan, Yurui, 2021. "Optimization of uncertain agricultural management considering the framework of water, energy and food," Agricultural Water Management, Elsevier, vol. 253(C).
    7. Hua, En & Wang, Xinyu & Engel, Bernie A. & Qian, Haiyang & Sun, Shikun & Wang, Yubao, 2021. "Water competition mechanism of food and energy industries in WEF Nexus: A case study in China," Agricultural Water Management, Elsevier, vol. 254(C).
    8. Inas El Gafy & Neil Grigg & Waskom Reagan, 2017. "Water-food-energy nexus index to maximize the economic water and energy productivity in an optimal cropping pattern," Water International, Taylor & Francis Journals, vol. 42(4), pages 495-503, May.
    9. Hasanzadeh Saray, Marzieh & Baubekova, Aziza & Gohari, Alireza & Eslamian, Seyed Saeid & Klove, Bjorn & Torabi Haghighi, Ali, 2022. "Optimization of Water-Energy-Food Nexus considering CO2 emissions from cropland: A case study in northwest Iran," Applied Energy, Elsevier, vol. 307(C).
    10. Fei Wang & Yaning Chen & Zhi Li & Gonghuan Fang & Yupeng Li & Zhenhua Xia, 2019. "Assessment of the Irrigation Water Requirement and Water Supply Risk in the Tarim River Basin, Northwest China," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    11. Jat, H.S. & Jat, R.D. & Nanwal, R.K. & Lohan, Shiv Kumar & Yadav, A.K. & Poonia, Tanuja & Sharma, P.C. & Jat, M.L., 2020. "Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India," Renewable Energy, Elsevier, vol. 155(C), pages 1372-1382.
    12. Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
    13. Teerachai Amnuaylojaroen & Pavinee Chanvichit & Radshadaporn Janta & Vanisa Surapipith, 2021. "Projection of Rice and Maize Productions in Northern Thailand under Climate Change Scenario RCP8.5," Agriculture, MDPI, vol. 11(1), pages 1-15, January.
    14. Gathala, Mahesh K. & Laing, Alison M. & Tiwari, T.P. & Timsina, J. & Islam, Md. S. & Chowdhury, A.K. & Chattopadhyay, C. & Singh, A.K. & Bhatt, B.P. & Shrestha, R. & Barma, N.C.D. & Rana, D.S. & Jacks, 2020. "Enabling smallholder farmers to sustainably improve their food, energy and water nexus while achieving environmental and economic benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Fernando Miralles-Wilhelm, 2016. "Development and application of integrative modeling tools in support of food-energy-water nexus planning—a research agenda," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 3-10, March.
    16. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    17. Fan, Xing & Zhang, Wen & Chen, Weiwei & Chen, Bin, 2020. "Land–water–energy nexus in agricultural management for greenhouse gas mitigation," Applied Energy, Elsevier, vol. 265(C).
    18. Sadeghi, Seyed Hamidreza & Sharifi Moghadam, Ehsan & Delavar, Majid & Zarghami, Mahdi, 2020. "Application of water-energy-food nexus approach for designating optimal agricultural management pattern at a watershed scale," Agricultural Water Management, Elsevier, vol. 233(C).
    19. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    20. Anthony Lamb & Rhys Green & Ian Bateman & Mark Broadmeadow & Toby Bruce & Jennifer Burney & Pete Carey & David Chadwick & Ellie Crane & Rob Field & Keith Goulding & Howard Griffiths & Astley Hastings , 2016. "The potential for land sparing to offset greenhouse gas emissions from agriculture," Nature Climate Change, Nature, vol. 6(5), pages 488-492, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    2. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    3. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    4. Ruan, Hongwei & Yu, Jingjie & Wang, Ping & Hao, Lingang & Wang, Zhenlong, 2023. "Relieving water stress by optimizing crop structure is a practicable approach in arid transboundary rivers of Central Asia," Agricultural Water Management, Elsevier, vol. 275(C).
    5. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    6. Parihar, C.M. & Meena, B.R. & Nayak, Hari Sankar & Patra, K. & Sena, D.R. & Singh, Raj & Jat, S.L. & Sharma, D.K. & Mahala, D.M. & Patra, S. & Rupesh, & Rathi, N. & Choudhary, M. & Jat, M.L. & Abdalla, 2022. "Co-implementation of precision nutrient management in long-term conservation agriculture-based systems: A step towards sustainable energy-water-food nexus," Energy, Elsevier, vol. 254(PB).
    7. Fan, Xing & Zhang, Wen & Chen, Weiwei & Chen, Bin, 2020. "Land–water–energy nexus in agricultural management for greenhouse gas mitigation," Applied Energy, Elsevier, vol. 265(C).
    8. Qi Liu & Yi Liu & Jie Niu & Dongwei Gui & Bill X. Hu, 2022. "Prediction of the Irrigation Area Carrying Capacity in the Tarim River Basin under Climate Change," Agriculture, MDPI, vol. 12(5), pages 1-14, April.
    9. Hourieh Masaeli & Alireza Gohari & Marzieh Hasanzadeh Saray & Ali Torabi Haghighi, 2023. "Developing a new water–energy–food‐greenhouse gases nexus tool for sustainable agricultural landscape management," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 877-892, April.
    10. Hua, En & Wang, Xinyu & Engel, Bernie A. & Qian, Haiyang & Sun, Shikun & Wang, Yubao, 2021. "Water competition mechanism of food and energy industries in WEF Nexus: A case study in China," Agricultural Water Management, Elsevier, vol. 254(C).
    11. Oviroh, Peter Ozaveshe & Austin-Breneman, Jesse & Chien, Cheng-Chun & Chakravarthula, Praneet Nallan & Harikumar, Vaishnavi & Shiva, Pranjal & Kimbowa, Alvin Bagetuuma & Luntz, Jonathan & Miyingo, Emm, 2023. "Micro Water-Energy-Food (MicroWEF) Nexus: A system design optimization framework for Integrated Natural Resource Conservation and Development (INRCD) projects at community scale," Applied Energy, Elsevier, vol. 333(C).
    12. Feng Huang & Zhong Liu & Bradley Ridoutt & Jing Huang & Baoguo Li, 2015. "China’s water for food under growing water scarcity," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(5), pages 933-949, October.
    13. Qin, Jingxiu & Duan, Weili & Chen, Yaning & Dukhovny, Viktor A. & Sorokin, Denis & Li, Yupeng & Wang, Xuanxuan, 2022. "Comprehensive evaluation and sustainable development of water–energy–food–ecology systems in Central Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    14. Sadeghi, Seyed Hamidreza & Sharifi Moghadam, Ehsan & Delavar, Majid & Zarghami, Mahdi, 2020. "Application of water-energy-food nexus approach for designating optimal agricultural management pattern at a watershed scale," Agricultural Water Management, Elsevier, vol. 233(C).
    15. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    16. Alvar-Beltrán, Jorge & Saturnin, Coulibaly & Grégoire, Baki & Camacho, Jose Luís & Dao, Abdalla & Migraine, Jean Baptiste & Marta, Anna Dalla, 2023. "Using AquaCrop as a decision-support tool for improved irrigation management in the Sahel region," Agricultural Water Management, Elsevier, vol. 287(C).
    17. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Dutta, S. K & Laing, Alison M. & Kumar, S. & Gathala, Mahesh K. & Singh, Ajoy K. & Gaydon, D.S. & Poulton, P., 2020. "Improved water management practices improve cropping system profitability and smallholder farmers’ incomes," Agricultural Water Management, Elsevier, vol. 242(C).
    19. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    20. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.