IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i8p839-d1633820.html
   My bibliography  Save this article

Evaluating the Dynamic Response of Cultivated Land Expansion and Fallow Urgency in Arid Regions Using Remote Sensing and Multi-Source Data Fusion Methods

Author

Listed:
  • Liqiang Shen

    (School of Science, Shihezi University, Shihezi 832000, China)

  • Zexian Li

    (School of Science, Shihezi University, Shihezi 832000, China)

  • Jiaxin Hao

    (School of Science, Shihezi University, Shihezi 832000, China)

  • Lei Wang

    (School of Mathematical Sciences, Dalian University of Technology, Dalian 116000, China)

  • Huanhuan Chen

    (School of Science, Shihezi University, Shihezi 832000, China
    Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi 832000, China)

  • Yuejian Wang

    (School of Science, Shihezi University, Shihezi 832000, China
    Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi 832000, China)

  • Baofei Xia

    (School of Science, Shihezi University, Shihezi 832000, China)

Abstract

In order to cope with the ecological pressure caused by the uncontrolled expansion of cultivated land in arid areas and ensure regional food security, the implementation of a cultivated land fallowing system has become an effective way to restore the ecology, alleviate the pressure on cultivated land, and increase productivity. In view of this, this paper takes the Tarim River Basin, located in the arid zone of China’s agricultural continent, as the research object. Using a land use transfer matrix and a gravity center migration model, the paper analyzes the spatiotemporal characteristics of cultivated land expansion in the Tarim River Basin from 2000 to 2020. Through remote sensing and the integration of multi-source data, the paper constructs an arable land fallow urgency index (SILF) from multiple dimensions such as human activity intensity, ecological vulnerability, output value, water resources status, and terrain conditions. The research results show that (1) cultivated land in the Tarim River Basin expanded by 15,665.133 km 2 in general, which is manifested by spreading around based on existing cultivated land, mainly from the conversion of grassland and unused land; the center of gravity of cultivated land moved 37.833 km to the northeast and 7.257 km to the southwest first. (2) The area of not urgently fallow (NUF) in the watershed showed an overall downward trend, decreasing by 10%, while the area of very urgently fallow (VUF) increased by 16%. VUF is mainly distributed in the marginal areas of cultivated land close to the desert and is gradually expanding into the interior of cultivated land. (3) The overall ecological environment of cultivated land in the watershed is showing a deteriorating trend, and the deterioration is gradually spreading from the edge of the cultivated land to the interior. (4) There are significant differences in the SILF values of different land use types after conversion to cultivated land. The urgency of fallowing cultivated land converted from unused land is the highest, followed by grassland, forest land, water bodies, and construction land. The expanded cultivated land has a higher SILF value than the original cultivated land. The research results can provide insights into regional land resource management, the formulation of cultivated land protection policies, and the ecological restoration of cultivated land.

Suggested Citation

  • Liqiang Shen & Zexian Li & Jiaxin Hao & Lei Wang & Huanhuan Chen & Yuejian Wang & Baofei Xia, 2025. "Evaluating the Dynamic Response of Cultivated Land Expansion and Fallow Urgency in Arid Regions Using Remote Sensing and Multi-Source Data Fusion Methods," Agriculture, MDPI, vol. 15(8), pages 1-27, April.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:8:p:839-:d:1633820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/8/839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/8/839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lanping Tang & Ge Shen & Min Cheng & Chengchao Zuo & Feiyang Li & Hang Liu & Shaohua Wu, 2024. "Spillover Impacts of the Utilization of Winter Fallow Fields on Grain Production and Carbon Emissions," Land, MDPI, vol. 13(8), pages 1-17, August.
    2. Qinqin Zhang & Fang Gu & Sicong Zhang & Xuehua Chen & Xue Ding & Zhonglin Xu, 2024. "Spatiotemporal Variation in Wind Erosion in Tarim River Basin from 2010 to 2018," Land, MDPI, vol. 13(3), pages 1-14, March.
    3. Huang, Shaochun & Wortmann, Michel & Duethmann, Doris & Menz, Christoph & Shi, Fengzhi & Zhao, Chengyi & Su, Buda & Krysanova, Valentina, 2018. "Adaptation strategies of agriculture and water management to climate change in the Upper Tarim River basin, NW China," Agricultural Water Management, Elsevier, vol. 203(C), pages 207-224.
    4. Meng Wang & Xiaofang Sun & Zemeng Fan & Tianxiang Yue, 2019. "Investigation of Future Land Use Change and Implications for Cropland Quality: The Case of China," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    5. Tayierjiang Aishan & Jian Song & Ümüt Halik & Florian Betz & Asadilla Yusup, 2024. "Predicting Land-Use Change Trends and Habitat Quality in the Tarim River Basin: A Perspective with Climate Change Scenarios and Multiple Scales," Land, MDPI, vol. 13(8), pages 1-25, July.
    6. Robert M X Wu & Zhongwu Zhang & Wanjun Yan & Jianfeng Fan & Jinwen Gou & Bao Liu & Ergun Gide & Jeffrey Soar & Bo Shen & Syed Fazal-e-Hasan & Zengquan Liu & Peng Zhang & Peilin Wang & Xinxin Cui & Zha, 2022. "A comparative analysis of the principal component analysis and entropy weight methods to establish the indexing measurement," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-26, January.
    7. Wang, Yahui & Li, Xiubin & He, Huiyan & Xin, Liangjie & Tan, Minghong, 2020. "How reliable are cultivated land assets as social security for Chinese farmers?," Land Use Policy, Elsevier, vol. 90(C).
    8. Kehoe, Michael & Harding, Adele & Pagdilao, Seinfeld Joshua & Appels, Willemijn M., 2025. "Effect of topographical and soil complexity on potato yields in irrigated fields," Agricultural Water Management, Elsevier, vol. 307(C).
    9. Yuanqing Li & Kaifang Shi & Yahui Wang & Qingyuan Yang, 2021. "Quantifying and Evaluating the Cultivated Areas Suitable for Fallow in Chongqing of China Using Multisource Data," Land, MDPI, vol. 10(1), pages 1-22, January.
    10. Lu, Hua & Xie, Hualin & Lv, Tiangui & Yao, Guanrong, 2019. "Determinants of cultivated land recuperation in ecologically damaged areas in China," Land Use Policy, Elsevier, vol. 81(C), pages 160-166.
    11. Yifeng Hou & Yaning Chen & Zhi Li & Yang Wang, 2023. "Changes in Land Use Pattern and Structure under the Rapid Urbanization of the Tarim River Basin," Land, MDPI, vol. 12(3), pages 1-18, March.
    12. Lu Zhang & Xuehan Lin & Bingkui Qiu & Guoliang Ou & Zuo Zhang & Siyu Han, 2022. "Impact of Value Perception on Farmers’ Willingness to Participate in Farmland Fallow: A Case-Study in Major Grain-Producing Areas of Hubei and Hunan, China," Sustainability, MDPI, vol. 14(2), pages 1-15, January.
    13. Xiaoying Wang & Hangang Hu & Aifeng Ning & Guan Li & Xueqi Wang, 2022. "The Impact of Farmers’ Perception on Their Cultivated Land Quality Protection Behavior: A Case Study of Ningbo, China," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    14. Wu, Wenbin & Yu, Qiangyi & You, Liangzhi & Chen, Kevin & Tang, Huajun & Liu, Jianguo, 2018. "Global cropping intensity gaps: Increasing food production without cropland expansion," Land Use Policy, Elsevier, vol. 76(C), pages 515-525.
    15. Hong Chen & Sha Chen & Runjia Yang & Liping Shan & Jinmin Hao & Yanmei Ye, 2023. "Optimizing the Cropland Fallow for Water Resource Security in the Groundwater Funnel Area of China," Land, MDPI, vol. 12(2), pages 1-15, February.
    16. Huan Xu & Jianjun Yang & Guozhu Xia & Tao Lin, 2022. "Spatio-temporal Differentiation of Coupling Coordination between Ecological Footprint and Ecosystem Service Functions in the Aksu Region, Xinjiang, China," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    17. Pengwen Gao & Alimujiang Kasimu & Yongyu Zhao & Bing Lin & Jinpeng Chai & Tuersunayi Ruzi & Hemiao Zhao, 2020. "Evaluation of the Temporal and Spatial Changes of Ecological Quality in the Hami Oasis Based on RSEI," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    18. Wu, Hao & Xu, Min & Peng, Zhuoyue & Chen, Xiaoping, 2022. "Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia," Agricultural Water Management, Elsevier, vol. 269(C).
    19. Zhang, Xifeng & Zhang, Lanhui & He, Chansheng & Li, Jinlin & Jiang, Yiwen & Ma, Libang, 2014. "Quantifying the impacts of land use/land cover change on groundwater depletion in Northwestern China – A case study of the Dunhuang oasis," Agricultural Water Management, Elsevier, vol. 146(C), pages 270-279.
    20. Shiyu Wang & Ximeng Xu, 2024. "Spatiotemporal Variation in Soil Wind Erosion in the Northern Slope of the Tianshan Mountains from 2000 to 2018," Land, MDPI, vol. 13(10), pages 1-16, October.
    21. Yang Sheng & Weizhong Liu & Hailiang Xu, 2024. "Study on Spatial Differentiation Characteristics and Driving Mechanism of Sustainable Utilization of Cultivated Land in Tarim River Basin," Land, MDPI, vol. 13(12), pages 1-26, December.
    22. Feng, Meiqing & Chen, Yaning & Duan, Weili & Fang, Gonghuan & li, Zhi & Jiao, Li & Sun, Fan & Li, Yupeng & Hou, Yifeng, 2022. "Comprehensive evaluation of the water-energy-food nexus in the agricultural management of the Tarim River Basin, Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    23. Qi Liu & Yi Liu & Jie Niu & Dongwei Gui & Bill X. Hu, 2022. "Prediction of the Irrigation Area Carrying Capacity in the Tarim River Basin under Climate Change," Agriculture, MDPI, vol. 12(5), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Jiang & Xiubin Li & Liangjie Xin & Minghong Tan & Wen Zhang, 2023. "Impacts of Rice Cropping System Changes on Paddy Methane Emissions in Southern China," Land, MDPI, vol. 12(2), pages 1-13, January.
    2. Jiawen Yu & Shengyang Pu & Hui Cheng & Cai Ren & Xiaoying Lai & Aihua Long, 2024. "Promoting Sustainability: Collaborative Governance Pathways for Virtual Water Interactions and Environmental Emissions," Sustainability, MDPI, vol. 16(21), pages 1-29, October.
    3. Yuan Liu & Sihai Liu & Kun Xing, 2024. "Assessment of Ecosystem Services and Exploration of Trade-Offs and Synergistic Relationships in Arid Areas: A Case Study of the Kriya River Basin in Xinjiang, China," Sustainability, MDPI, vol. 16(5), pages 1-21, March.
    4. Qifei Zhang & Congjian Sun & Yaning Chen & Wei Chen & Yanyun Xiang & Jiao Li & Yuting Liu, 2022. "Recent Oasis Dynamics and Ecological Security in the Tarim River Basin, Central Asia," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    5. Carlos Durán Gabela & Bernardo Trejos & Pablo Lamiño Jaramillo & Amy Boren-Alpízar, 2022. "Sustainable Agriculture: Relationship between Knowledge and Attitude among University Students," Sustainability, MDPI, vol. 14(23), pages 1-11, November.
    6. Xiaofang Sun & Chao Yu & Junbang Wang & Meng Wang, 2020. "The Intensity Analysis of Production Living Ecological Land in Shandong Province, China," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    7. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    8. Chengqiang Li & Junxiao Wang & Liang Ge & Yujie Zhou & Shenglu Zhou, 2022. "Optimization of Sample Construction Based on NDVI for Cultivated Land Quality Prediction," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
    9. Yi Liu & Jie Xue & Dongwei Gui & Jiaqiang Lei & Huaiwei Sun & Guanghui Lv & Zhiwei Zhang, 2018. "Agricultural Oasis Expansion and Its Impact on Oasis Landscape Patterns in the Southern Margin of Tarim Basin, Northwest China," Sustainability, MDPI, vol. 10(6), pages 1-12, June.
    10. Zhang, Qingsong & Sun, Jiahao & Dai, Changlei & Zhang, Guangxin & Wu, Yanfeng, 2024. "Sustainable development of groundwater resources under the large-scale conversion of dry land into rice fields," Agricultural Water Management, Elsevier, vol. 298(C).
    11. Khumairoh, Uma & Teixeira, Heitor Mancini & Yadav, Sudhir & Schulte, Rogier P.O. & Batas, Mary Ann & Asmara, Degi Harja & Flor, Rica Joy & Agustina, Rohmatin & Setiawan, Adi & Nurlaelih, Euis E. & Pur, 2024. "Linking types of East Javanese rice farming systems to farmers' perceptions of complex rice systems," Agricultural Systems, Elsevier, vol. 218(C).
    12. Yu, Zhenning & She, Shuoqi & Xia, Chuyu & Luo, Jiaojiao, 2023. "How to solve the dilemma of China’s land fallow policy: Application of voluntary bidding mode in the Yangtze River Delta of China," Land Use Policy, Elsevier, vol. 125(C).
    13. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    14. Chen, Xin & Jiang, Li & Zhang, Guoliang & Meng, Lijun & Pan, Zhihua & Lun, Fei & An, Pingli, 2021. "Green-depressing cropping system: A referential land use practice for fallow to ensure a harmonious human-land relationship in the farming-pastoral ecotone of northern China," Land Use Policy, Elsevier, vol. 100(C).
    15. Kotir, Julius H. & Bell, Lindsay W. & Kirkegaard, John A. & Whish, Jeremy & Aikins, Kojo Atta, 2022. "Labour demand – The forgotten input influencing the execution and adoptability of alternative cropping systems in Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    16. Qiu, Xin & Jin, Jianjun & He, Rui & Mao, Jiansu, 2022. "The deviation between the willingness and behavior of farmers to adopt electricity-saving tricycles and its influencing factors in Dazu District of China," Energy Policy, Elsevier, vol. 167(C).
    17. Haiying Huo & Pengfei Liu & Su Li & Wei Hou & Wenjing Xu & Xiayu Wen & Yuhang Bai, 2025. "Study on the Spatiotemporal Evolution Relationship Between Ecological Resilience and Land Use Intensity in Hebei Province and Scenario Simulation," Sustainability, MDPI, vol. 17(2), pages 1-19, January.
    18. Wencun Zhou & Zhengjia Liu & Sisi Wang, 2023. "Spatiotemporal Dynamics of the Cropland Area and Its Response to Increasing Regional Extreme Weather Events in the Farming-Pastoral Ecotone of Northern China during 1992–2020," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    19. Amit Kumar Srivastava & Suranjana Bhaswati Borah & Payel Ghosh Dastidar & Archita Sharma & Debabrat Gogoi & Priyanuz Goswami & Giti Deka & Suryakanta Khandai & Rupam Borgohain & Sudhanshu Singh & Asho, 2023. "Rice-Fallow Targeting for Cropping Intensification through Geospatial Technologies in the Rice Belt of Northeast India," Agriculture, MDPI, vol. 13(8), pages 1-18, July.
    20. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:8:p:839-:d:1633820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.