IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i8p839-d1633820.html
   My bibliography  Save this article

Evaluating the Dynamic Response of Cultivated Land Expansion and Fallow Urgency in Arid Regions Using Remote Sensing and Multi-Source Data Fusion Methods

Author

Listed:
  • Liqiang Shen

    (School of Science, Shihezi University, Shihezi 832000, China)

  • Zexian Li

    (School of Science, Shihezi University, Shihezi 832000, China)

  • Jiaxin Hao

    (School of Science, Shihezi University, Shihezi 832000, China)

  • Lei Wang

    (School of Mathematical Sciences, Dalian University of Technology, Dalian 116000, China)

  • Huanhuan Chen

    (School of Science, Shihezi University, Shihezi 832000, China
    Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi 832000, China)

  • Yuejian Wang

    (School of Science, Shihezi University, Shihezi 832000, China
    Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi 832000, China)

  • Baofei Xia

    (School of Science, Shihezi University, Shihezi 832000, China)

Abstract

In order to cope with the ecological pressure caused by the uncontrolled expansion of cultivated land in arid areas and ensure regional food security, the implementation of a cultivated land fallowing system has become an effective way to restore the ecology, alleviate the pressure on cultivated land, and increase productivity. In view of this, this paper takes the Tarim River Basin, located in the arid zone of China’s agricultural continent, as the research object. Using a land use transfer matrix and a gravity center migration model, the paper analyzes the spatiotemporal characteristics of cultivated land expansion in the Tarim River Basin from 2000 to 2020. Through remote sensing and the integration of multi-source data, the paper constructs an arable land fallow urgency index (SILF) from multiple dimensions such as human activity intensity, ecological vulnerability, output value, water resources status, and terrain conditions. The research results show that (1) cultivated land in the Tarim River Basin expanded by 15,665.133 km 2 in general, which is manifested by spreading around based on existing cultivated land, mainly from the conversion of grassland and unused land; the center of gravity of cultivated land moved 37.833 km to the northeast and 7.257 km to the southwest first. (2) The area of not urgently fallow (NUF) in the watershed showed an overall downward trend, decreasing by 10%, while the area of very urgently fallow (VUF) increased by 16%. VUF is mainly distributed in the marginal areas of cultivated land close to the desert and is gradually expanding into the interior of cultivated land. (3) The overall ecological environment of cultivated land in the watershed is showing a deteriorating trend, and the deterioration is gradually spreading from the edge of the cultivated land to the interior. (4) There are significant differences in the SILF values of different land use types after conversion to cultivated land. The urgency of fallowing cultivated land converted from unused land is the highest, followed by grassland, forest land, water bodies, and construction land. The expanded cultivated land has a higher SILF value than the original cultivated land. The research results can provide insights into regional land resource management, the formulation of cultivated land protection policies, and the ecological restoration of cultivated land.

Suggested Citation

  • Liqiang Shen & Zexian Li & Jiaxin Hao & Lei Wang & Huanhuan Chen & Yuejian Wang & Baofei Xia, 2025. "Evaluating the Dynamic Response of Cultivated Land Expansion and Fallow Urgency in Arid Regions Using Remote Sensing and Multi-Source Data Fusion Methods," Agriculture, MDPI, vol. 15(8), pages 1-27, April.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:8:p:839-:d:1633820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/8/839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/8/839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yifeng Hou & Yaning Chen & Zhi Li & Yang Wang, 2023. "Changes in Land Use Pattern and Structure under the Rapid Urbanization of the Tarim River Basin," Land, MDPI, vol. 12(3), pages 1-18, March.
    2. Lu Zhang & Xuehan Lin & Bingkui Qiu & Guoliang Ou & Zuo Zhang & Siyu Han, 2022. "Impact of Value Perception on Farmers’ Willingness to Participate in Farmland Fallow: A Case-Study in Major Grain-Producing Areas of Hubei and Hunan, China," Sustainability, MDPI, vol. 14(2), pages 1-15, January.
    3. Xiaoying Wang & Hangang Hu & Aifeng Ning & Guan Li & Xueqi Wang, 2022. "The Impact of Farmers’ Perception on Their Cultivated Land Quality Protection Behavior: A Case Study of Ningbo, China," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    4. Wu, Wenbin & Yu, Qiangyi & You, Liangzhi & Chen, Kevin & Tang, Huajun & Liu, Jianguo, 2018. "Global cropping intensity gaps: Increasing food production without cropland expansion," Land Use Policy, Elsevier, vol. 76(C), pages 515-525.
    5. Lanping Tang & Ge Shen & Min Cheng & Chengchao Zuo & Feiyang Li & Hang Liu & Shaohua Wu, 2024. "Spillover Impacts of the Utilization of Winter Fallow Fields on Grain Production and Carbon Emissions," Land, MDPI, vol. 13(8), pages 1-17, August.
    6. Qinqin Zhang & Fang Gu & Sicong Zhang & Xuehua Chen & Xue Ding & Zhonglin Xu, 2024. "Spatiotemporal Variation in Wind Erosion in Tarim River Basin from 2010 to 2018," Land, MDPI, vol. 13(3), pages 1-14, March.
    7. Huang, Shaochun & Wortmann, Michel & Duethmann, Doris & Menz, Christoph & Shi, Fengzhi & Zhao, Chengyi & Su, Buda & Krysanova, Valentina, 2018. "Adaptation strategies of agriculture and water management to climate change in the Upper Tarim River basin, NW China," Agricultural Water Management, Elsevier, vol. 203(C), pages 207-224.
    8. Hong Chen & Sha Chen & Runjia Yang & Liping Shan & Jinmin Hao & Yanmei Ye, 2023. "Optimizing the Cropland Fallow for Water Resource Security in the Groundwater Funnel Area of China," Land, MDPI, vol. 12(2), pages 1-15, February.
    9. Meng Wang & Xiaofang Sun & Zemeng Fan & Tianxiang Yue, 2019. "Investigation of Future Land Use Change and Implications for Cropland Quality: The Case of China," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    10. Tayierjiang Aishan & Jian Song & Ümüt Halik & Florian Betz & Asadilla Yusup, 2024. "Predicting Land-Use Change Trends and Habitat Quality in the Tarim River Basin: A Perspective with Climate Change Scenarios and Multiple Scales," Land, MDPI, vol. 13(8), pages 1-25, July.
    11. Huan Xu & Jianjun Yang & Guozhu Xia & Tao Lin, 2022. "Spatio-temporal Differentiation of Coupling Coordination between Ecological Footprint and Ecosystem Service Functions in the Aksu Region, Xinjiang, China," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    12. Robert M X Wu & Zhongwu Zhang & Wanjun Yan & Jianfeng Fan & Jinwen Gou & Bao Liu & Ergun Gide & Jeffrey Soar & Bo Shen & Syed Fazal-e-Hasan & Zengquan Liu & Peng Zhang & Peilin Wang & Xinxin Cui & Zha, 2022. "A comparative analysis of the principal component analysis and entropy weight methods to establish the indexing measurement," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-26, January.
    13. Wang, Yahui & Li, Xiubin & He, Huiyan & Xin, Liangjie & Tan, Minghong, 2020. "How reliable are cultivated land assets as social security for Chinese farmers?," Land Use Policy, Elsevier, vol. 90(C).
    14. Pengwen Gao & Alimujiang Kasimu & Yongyu Zhao & Bing Lin & Jinpeng Chai & Tuersunayi Ruzi & Hemiao Zhao, 2020. "Evaluation of the Temporal and Spatial Changes of Ecological Quality in the Hami Oasis Based on RSEI," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    15. Wu, Hao & Xu, Min & Peng, Zhuoyue & Chen, Xiaoping, 2022. "Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia," Agricultural Water Management, Elsevier, vol. 269(C).
    16. Zhang, Xifeng & Zhang, Lanhui & He, Chansheng & Li, Jinlin & Jiang, Yiwen & Ma, Libang, 2014. "Quantifying the impacts of land use/land cover change on groundwater depletion in Northwestern China – A case study of the Dunhuang oasis," Agricultural Water Management, Elsevier, vol. 146(C), pages 270-279.
    17. Shiyu Wang & Ximeng Xu, 2024. "Spatiotemporal Variation in Soil Wind Erosion in the Northern Slope of the Tianshan Mountains from 2000 to 2018," Land, MDPI, vol. 13(10), pages 1-16, October.
    18. Yang Sheng & Weizhong Liu & Hailiang Xu, 2024. "Study on Spatial Differentiation Characteristics and Driving Mechanism of Sustainable Utilization of Cultivated Land in Tarim River Basin," Land, MDPI, vol. 13(12), pages 1-26, December.
    19. Kehoe, Michael & Harding, Adele & Pagdilao, Seinfeld Joshua & Appels, Willemijn M., 2025. "Effect of topographical and soil complexity on potato yields in irrigated fields," Agricultural Water Management, Elsevier, vol. 307(C).
    20. Feng, Meiqing & Chen, Yaning & Duan, Weili & Fang, Gonghuan & li, Zhi & Jiao, Li & Sun, Fan & Li, Yupeng & Hou, Yifeng, 2022. "Comprehensive evaluation of the water-energy-food nexus in the agricultural management of the Tarim River Basin, Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    21. Yuanqing Li & Kaifang Shi & Yahui Wang & Qingyuan Yang, 2021. "Quantifying and Evaluating the Cultivated Areas Suitable for Fallow in Chongqing of China Using Multisource Data," Land, MDPI, vol. 10(1), pages 1-22, January.
    22. Lu, Hua & Xie, Hualin & Lv, Tiangui & Yao, Guanrong, 2019. "Determinants of cultivated land recuperation in ecologically damaged areas in China," Land Use Policy, Elsevier, vol. 81(C), pages 160-166.
    23. Qi Liu & Yi Liu & Jie Niu & Dongwei Gui & Bill X. Hu, 2022. "Prediction of the Irrigation Area Carrying Capacity in the Tarim River Basin under Climate Change," Agriculture, MDPI, vol. 12(5), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongkun Fu & Jian Li & Jian Lu & Xinglei Lin & Junrui Kang & Wenlong Zou & Xiangyu Ning & Yue Sun, 2025. "Prediction of Soybean Yield at the County Scale Based on Multi-Source Remote-Sensing Data and Deep Learning Models," Agriculture, MDPI, vol. 15(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Jiang & Xiubin Li & Liangjie Xin & Minghong Tan & Wen Zhang, 2023. "Impacts of Rice Cropping System Changes on Paddy Methane Emissions in Southern China," Land, MDPI, vol. 12(2), pages 1-13, January.
    2. Jiawen Yu & Shengyang Pu & Hui Cheng & Cai Ren & Xiaoying Lai & Aihua Long, 2024. "Promoting Sustainability: Collaborative Governance Pathways for Virtual Water Interactions and Environmental Emissions," Sustainability, MDPI, vol. 16(21), pages 1-29, October.
    3. Qifei Zhang & Congjian Sun & Yaning Chen & Wei Chen & Yanyun Xiang & Jiao Li & Yuting Liu, 2022. "Recent Oasis Dynamics and Ecological Security in the Tarim River Basin, Central Asia," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    4. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    5. Mingyue Li & Pujie Zhao & Yu Sun, 2025. "Impacts of Green Perception Benefits and Environmental Regulation Intensity on Farmers’ Agricultural Green Production Willingness: A New Perspective of Technology Acquisition," Agriculture, MDPI, vol. 15(13), pages 1-33, June.
    6. Yi Liu & Jie Xue & Dongwei Gui & Jiaqiang Lei & Huaiwei Sun & Guanghui Lv & Zhiwei Zhang, 2018. "Agricultural Oasis Expansion and Its Impact on Oasis Landscape Patterns in the Southern Margin of Tarim Basin, Northwest China," Sustainability, MDPI, vol. 10(6), pages 1-12, June.
    7. Zhang, Qingsong & Sun, Jiahao & Dai, Changlei & Zhang, Guangxin & Wu, Yanfeng, 2024. "Sustainable development of groundwater resources under the large-scale conversion of dry land into rice fields," Agricultural Water Management, Elsevier, vol. 298(C).
    8. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    9. Qiu, Xin & Jin, Jianjun & He, Rui & Mao, Jiansu, 2022. "The deviation between the willingness and behavior of farmers to adopt electricity-saving tricycles and its influencing factors in Dazu District of China," Energy Policy, Elsevier, vol. 167(C).
    10. Wencun Zhou & Zhengjia Liu & Sisi Wang, 2023. "Spatiotemporal Dynamics of the Cropland Area and Its Response to Increasing Regional Extreme Weather Events in the Farming-Pastoral Ecotone of Northern China during 1992–2020," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    11. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    12. Lulin Shen & Fang Wang, 2024. "Can Market-Oriented Allocation of Land Factors Promote the Adoption of Cropland Quality Protection Behaviors by Farmers: Evidence from Rural China," Land, MDPI, vol. 13(5), pages 1-19, May.
    13. Chan Lu & Lei Shi & Lihua Fu & Simian Liu & Jianqiao Li & Zhenchun Mo, 2023. "Urban Ecological Environment Quality Evaluation and Territorial Spatial Planning Response: Application to Changsha, Central China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    14. Shen, Ge & Yu, Qiangyi & Zhou, Qingbo & Wang, Cong & Wu, Wenbin, 2023. "From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity," Agricultural Systems, Elsevier, vol. 204(C).
    15. Na Chen & Gang Cheng & Jie Yang & Huan Ding & Shi He, 2023. "Evaluation of Urban Ecological Environment Quality Based on Improved RSEI and Driving Factors Analysis," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    16. Hodjo, Manzamasso & Dalton, Timothy & Nakelse, Tebila, 2021. "Cereal Land Allocation Under Weather and Price Uncertainties in West Africa," 2021 Conference, August 17-31, 2021, Virtual 315177, International Association of Agricultural Economists.
    17. Tanushree Gupta & Rina Kumari, 2024. "Source apportionment of groundwater quality in agriculture-dominated semiarid region, India—using an integrated approach of hydrochemistry, stable isotopes and land use/land cover change," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 26579-26605, October.
    18. Bingyi Wang & Tong Chen & Wangbing Liu, 2023. "Accounting for the Logic and Spatiotemporal Evolution of the Comprehensive Value of Cultivated Land around Big Cities: Empirical Evidence Based on 35 Counties in the Hefei Metropolitan Area," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    19. Zhiqiang Cai & Wenjie Zhang, 2024. "Quantitative evidence of the community of shared future for mankind as a driver of sustainable development in human society," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-16, December.
    20. Ji Zhang & Pei Zhang & Xinchen Gu & Mingjiang Deng & Xiaoying Lai & Aihua Long & Xiaoya Deng, 2023. "Analysis of Spatio-Temporal Pattern Changes and Driving Forces of Xinjiang Plain Oases Based on Geodetector," Land, MDPI, vol. 12(8), pages 1-15, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:8:p:839-:d:1633820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.