IDEAS home Printed from
   My bibliography  Save this article

Use of ENSO-related climate information in agricultural decision making in Argentina: a pilot experience


  • Podesta, Guillermo
  • Letson, David
  • Messina, Carlos
  • Royce, Fred
  • Ferreyra, R. Andres
  • Jones, James
  • Hansen, James
  • Llovet, Ignacio
  • Grondona, Martin
  • O'Brien, James J.


No abstract is available for this item.

Suggested Citation

  • Podesta, Guillermo & Letson, David & Messina, Carlos & Royce, Fred & Ferreyra, R. Andres & Jones, James & Hansen, James & Llovet, Ignacio & Grondona, Martin & O'Brien, James J., 2002. "Use of ENSO-related climate information in agricultural decision making in Argentina: a pilot experience," Agricultural Systems, Elsevier, vol. 74(3), pages 371-392, December.
  • Handle: RePEc:eee:agisys:v:74:y:2002:i:3:p:371-392

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. L. Ingber, 1993. "Simulated annealing: Practice versus theory," Lester Ingber Papers 93sa, Lester Ingber.
    2. Hansen, J. W. & Jones, J. W., 2000. "Scaling-up crop models for climate variability applications," Agricultural Systems, Elsevier, vol. 65(1), pages 43-72, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hansen, James W., 2002. "Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges," Agricultural Systems, Elsevier, vol. 74(3), pages 309-330, December.
    2. Julián Benitez & Roger Domecq, 2014. "Analysis of meteorological drought episodes in Paraguay," Climatic Change, Springer, vol. 127(1), pages 15-25, November.
    3. Huang, Kaixing & Wang, Jinxia & Huang, Jikun & Findlay, Christopher, 2018. "The potential benefits of agricultural adaptation to warming in China in the long run," Environment and Development Economics, Cambridge University Press, vol. 23(2), pages 139-160, April.
    4. Ubilava, David & Orlowski, Jan, 2016. "The Predictive Content of Climate Anomalies for Agricultural Production: Does ENSO Really Matter?," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236281, Agricultural and Applied Economics Association.
    5. Gonzalo Rondinone & Esteban Otto Thomasz & Ana Silvia Vilker, 2019. "The economic cost of extreme and severe droughts in soybean production in Argentina," Contaduría y Administración, Accounting and Management, vol. 64(1), pages 31-32, Enero-Mar.
    6. Carla Roncoli & Christine Jost & Paul Kirshen & Moussa Sanon & Keith Ingram & Mark Woodin & Léopold Somé & Frédéric Ouattara & Bienvenue Sanfo & Ciriaque Sia & Pascal Yaka & Gerrit Hoogenboom, 2009. "From accessing to assessing forecasts: an end-to-end study of participatory climate forecast dissemination in Burkina Faso (West Africa)," Climatic Change, Springer, vol. 92(3), pages 433-460, February.
    7. Nadolnyak, Denis A. & Novak, James L. & Vedenov, Dmitry V. & Paz, Joel O. & Fraisse, Clyde W. & Hoogenboom, Gerrit, 2007. "Non-Parametric Analysis of ENSO Impacts on Yield Distributions: Implications for GRP Contract Design," 2007 Annual Meeting, February 4-7, 2007, Mobile, Alabama 34858, Southern Agricultural Economics Association.
    8. World Bank, 2010. "Improving Water Management in Rainfed Agriculture : Issues and Options in Water-Constrained Production Systems," World Bank Other Operational Studies 13028, The World Bank.
    9. Rotili, Diego Hernán & Giorno, Agustín & Tognetti, Pedro Maximiliano & Maddonni, Gustavo Ángel, 2019. "Expansion of maize production in a semi-arid region of Argentina: Climatic and edaphic constraints and their implications on crop management," Agricultural Water Management, Elsevier, vol. 226(C).
    10. Novak, James L. & Nadolnyak, Denis A., 2008. "Climate Effects on Rainfall Index Insurance Purchase Decisions," 2009 Annual Meeting, January 31-February 3, 2009, Atlanta, Georgia 46834, Southern Agricultural Economics Association.
    11. Andrieu, Nadine & Descheemaeker, Katrien & Sanou, Thierry & Chia, Eduardo, 2015. "Effects of technical interventions on flexibility of farming systems in Burkina Faso: Lessons for the design of innovations in West Africa," Agricultural Systems, Elsevier, vol. 136(C), pages 125-137.
    12. Woli, Prem & Paz, Joel O. & Hoogenboom, Gerrit & Garcia y Garcia, Axel & Fraisse, Clyde W., 2013. "The ENSO effect on peanut yield as influenced by planting date and soil type," Agricultural Systems, Elsevier, vol. 121(C), pages 1-8.
    13. Bert, Federico E. & Satorre, Emilio H. & Toranzo, Fernando Ruiz & Podesta, Guillermo P., 2006. "Climatic information and decision-making in maize crop production systems of the Argentinean Pampas," Agricultural Systems, Elsevier, vol. 88(2-3), pages 180-204, June.
    14. Geyser, Mariette & Louw, Andre & Botha, L., 2009. "Is geographic diversification sufficient to limit contract grower risk?," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 48(1), pages 1-14, March.
    15. Verónica Martín-Gómez & Marcelo Barreiro, 2017. "Effect of future climate change on the coupling between the tropical oceans and precipitation over Southeastern South America," Climatic Change, Springer, vol. 141(2), pages 315-329, March.
    16. Davey, Michael & Brookshaw, Anca, 2011. "Long-range meteorological forecasting and links to agricultural applications," Food Policy, Elsevier, vol. 36(S1), pages 88-93.
    17. Cabrera, Victor E. & Letson, David & Podesta, Guillermo, 2007. "The value of climate information when farm programs matter," Agricultural Systems, Elsevier, vol. 93(1-3), pages 25-42, March.
    18. Villoria, Nelson B. & Delgado, Michael, 2017. "Worldwide Crop Supply Responses to El Niño Southern Oscillation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258564, Agricultural and Applied Economics Association.
    19. Meza, Francisco J. & Wilks, Daniel S., 2004. "Use of seasonal forecasts of sea surface temperature anomalies for potato fertilization management. Theoretical study considering EPIC model results at Valdivia, Chile," Agricultural Systems, Elsevier, vol. 82(2), pages 161-180, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergey, Paul K. & Ragsdale, Cliff, 2005. "Modified differential evolution: a greedy random strategy for genetic recombination," Omega, Elsevier, vol. 33(3), pages 255-265, June.
    2. Finger, Robert, 2012. "Biases in Farm-Level Yield Risk Analysis due to Data Aggregation," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(01), pages 1-14, February.
    3. Moriguchi, Kai & Ueki, Tatsuhito & Saito, Masashi, 2020. "Establishing optimal forest harvesting regulation with continuous approximation," Operations Research Perspectives, Elsevier, vol. 7(C).
    4. David Easterling & Layne Watson & Michael Madigan & Brent Castle & Michael Trosset, 2014. "Parallel deterministic and stochastic global minimization of functions with very many minima," Computational Optimization and Applications, Springer, vol. 57(2), pages 469-492, March.
    5. Mayer, D. G. & Belward, J. A. & Burrage, K., 1996. "Use of advanced techniques to optimize a multi-dimensional dairy model," Agricultural Systems, Elsevier, vol. 50(3), pages 239-253.
    6. Mayer, D. G. & Belward, J. A. & Burrage, K., 2001. "Robust parameter settings of evolutionary algorithms for the optimisation of agricultural systems models," Agricultural Systems, Elsevier, vol. 69(3), pages 199-213, September.
    7. Van den Broeke, Maud & Boute, Robert & Cardoen, Brecht & Samii, Behzad, 2017. "An efficient solution method to design the cost-minimizing platform portfolio," European Journal of Operational Research, Elsevier, vol. 259(1), pages 236-250.
    8. Mavromatis, T., 2016. "Spatial resolution effects on crop yield forecasts: An application to rainfed wheat yield in north Greece with CERES-Wheat," Agricultural Systems, Elsevier, vol. 143(C), pages 38-48.
    9. Pavel Y. Gubin & Vladislav P. Oboskalov & Anatolijs Mahnitko & Roman Petrichenko, 2020. "Simulated Annealing, Differential Evolution and Directed Search Methods for Generator Maintenance Scheduling," Energies, MDPI, Open Access Journal, vol. 13(20), pages 1-26, October.
    10. Chuck Holland & Jack Levis & Ranganath Nuggehalli & Bob Santilli & Jeff Winters, 2017. "UPS Optimizes Delivery Routes," Interfaces, INFORMS, vol. 47(1), pages 8-23, February.
    11. L. Ingber, 2018. "Model of Models (MOM)," Lester Ingber Papers 18mo, Lester Ingber.
    12. Bezuidenhout, C.N. & Singels, A., 2007. "Operational forecasting of South African sugarcane production: Part 2 - System evaluation," Agricultural Systems, Elsevier, vol. 92(1-3), pages 39-51, January.
    13. James Watson & Andrew Challinor & Thomas Fricker & Christopher Ferro, 2015. "Comparing the effects of calibration and climate errors on a statistical crop model and a process-based crop model," Climatic Change, Springer, vol. 132(1), pages 93-109, September.
    14. Ingber, Lester, 2000. "High-resolution path-integral development of financial options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 529-558.
    15. Graeme J. Doole & David J. Pannell, 2008. "Optimisation of a Large, Constrained Simulation Model using Compressed Annealing," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(1), pages 188-206, February.
    16. Lehmann, Sebastian & Huth, Andreas, 2015. "Fast calibration of a dynamic vegetation model with minimum observation data," Ecological Modelling, Elsevier, vol. 301(C), pages 98-105.
    17. Dimitrios Karpouzos & Konstantinos Katsifarakis, 2013. "A Set of New Benchmark Optimization Problems for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3333-3348, July.
    18. Changtong Luo & Bo Yu, 2012. "Low dimensional simplex evolution: a new heuristic for global optimization," Journal of Global Optimization, Springer, vol. 52(1), pages 45-55, January.
    19. Ş. Birbil & Shu-Cherng Fang & Ruey-Lin Sheu, 2004. "On the Convergence of a Population-Based Global Optimization Algorithm," Journal of Global Optimization, Springer, vol. 30(2), pages 301-318, November.
    20. Quiroga, Sonia & Iglesias, Ana, 2009. "A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain," Agricultural Systems, Elsevier, vol. 101(1-2), pages 91-100, June.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:74:y:2002:i:3:p:371-392. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.