IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v47y2017i1p8-23.html
   My bibliography  Save this article

UPS Optimizes Delivery Routes

Author

Listed:
  • Chuck Holland

    (UPS, Atlanta, Georgia 30328)

  • Jack Levis

    (UPS, Timonium, Maryland 21093)

  • Ranganath Nuggehalli

    (UPS, Timonium, Maryland 21093)

  • Bob Santilli

    (UPS, Timonium, Maryland 21093)

  • Jeff Winters

    (UPS, Timonium, Maryland 21093)

Abstract

UPS, the leading logistics provider in the world, and long known for its penchant for efficiency, embarked on a journey to streamline and modernize its pickup and delivery operations in 2003. This journey resulted in a suite of systems, including a meta-heuristic optimization system, which it called “On Road Integrated Optimization and Navigation” (ORION). Every day, ORION provides an optimized route for each of UPS’ 55,000 U.S. drivers based on the packages to be picked up and delivered on that day. The system creates routes that maintain the desired level of consistency from day to day. To bring this transformational system from concept to reality, UPS instituted extensive change in management practices to ensure that both users and executives would accept the system. Costing more than $295 million to build and deploy, ORION is expected to save UPS $300–$400 million annually. ORION is also contributing to the sustainability efforts of UPS by reducing its CO 2 emissions by 100,000 tons annually. By providing a foundation for a new generation of advanced planning systems, ORION is transforming the pickup and delivery operations at UPS.

Suggested Citation

  • Chuck Holland & Jack Levis & Ranganath Nuggehalli & Bob Santilli & Jeff Winters, 2017. "UPS Optimizes Delivery Routes," Interfaces, INFORMS, vol. 47(1), pages 8-23, February.
  • Handle: RePEc:inm:orinte:v:47:y:2017:i:1:p:8-23
    DOI: 10.1287/inte.2016.0875
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/inte.2016.0875
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2016.0875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    2. Ilgaz Sungur & Yingtao Ren & Fernando Ordóñez & Maged Dessouky & Hongsheng Zhong, 2010. "A Model and Algorithm for the Courier Delivery Problem with Uncertainty," Transportation Science, INFORMS, vol. 44(2), pages 193-205, May.
    3. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    4. L. Ingber, 1993. "Simulated annealing: Practice versus theory," Lester Ingber Papers 93sa, Lester Ingber.
    5. Chris Groër & Bruce Golden & Edward Wasil, 2009. "The Consistent Vehicle Routing Problem," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 630-643, February.
    6. Sanjeeb Dash & Oktay Günlük & Andrea Lodi & Andrea Tramontani, 2012. "A Time Bucket Formulation for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 132-147, February.
    7. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    2. Zhang, Juan & Campbell, James F. & Sweeney, Donald C., 2024. "A continuous approximation approach to integrated truck and drone delivery systems," Omega, Elsevier, vol. 126(C).
    3. Haoyuan Hu & Ying Zhang & Jiangwen Wei & Yang Zhan & Xinhui Zhang & Shaojian Huang & Guangrui Ma & Yuming Deng & Siwei Jiang, 2022. "Alibaba Vehicle Routing Algorithms Enable Rapid Pick and Delivery," Interfaces, INFORMS, vol. 52(1), pages 27-41, January.
    4. Max Leyerer & Marc-Oliver Sonneberg & Maximilian Heumann & Tim Kammann & Michael H. Breitner, 2019. "Individually Optimized Commercial Road Transport: A Decision Support System for Customizable Routing Problems," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    5. Michael F. Gorman, 2021. "Contextual Complications in Analytical Modeling: When the Problem is Not the Problem," Interfaces, INFORMS, vol. 51(4), pages 245-261, July.
    6. Sheng Liu & Long He & Zuo-Jun Max Shen, 2021. "On-Time Last-Mile Delivery: Order Assignment with Travel-Time Predictors," Management Science, INFORMS, vol. 67(7), pages 4095-4119, July.
    7. B. Madhu Rao & Petros Xanthopoulos & Qipeng Phil Zheng, 2020. "Case Article—DeLand Crayon Company: An Application of the Traveling Salesman Problem to Production Scheduling with Sequence-Dependent Setup Times," INFORMS Transactions on Education, INFORMS, vol. 20(2), pages 93-98, January.
    8. Junyu Cao & Mariana Olvera-Cravioto & Zuo-Jun (Max) Shen, 2020. "Last-Mile Shared Delivery: A Discrete Sequential Packing Approach," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1466-1497, November.
    9. Toni Greif & Nikolai Stein & Christoph M. Flath, 2023. "Information Value Analysis for Real-Time Silo Fill-Level Monitoring," Interfaces, INFORMS, vol. 53(4), pages 283-294, July.
    10. Lance W. Saunders & J. Paul Brooks & Jason R. W. Merrick & Chad W. Autry, 2020. "Addressing Economic/Environmental Sustainability Trade‐offs in Procurement Episodes with Industrial Suppliers," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1256-1269, May.
    11. Tamara Adams & Alessandro Ferrucci & Pedro Carvalho & Sothiara Em & Benjamin Whitley & Ryan Cecchi & Teresa Hicks & Alexander Wooten & John Cuffe & Stephanie Studds & Irvin Lustig & Steve Sashihara, 2023. "Advanced Analytics Drives Reengineering of Field Operations for the 2020 U.S. Census," Interfaces, INFORMS, vol. 53(1), pages 47-58, January.
    12. Michael Fairley & David Scheinker & Margaret L. Brandeau, 2019. "Improving the efficiency of the operating room environment with an optimization and machine learning model," Health Care Management Science, Springer, vol. 22(4), pages 756-767, December.
    13. Koen Peters & Sérgio Silva & Tim Sergio Wolter & Luis Anjos & Nina van Ettekoven & Éric Combette & Anna Melchiori & Hein Fleuren & Dick den Hertog & Özlem Ergun, 2022. "UN World Food Programme: Toward Zero Hunger with Analytics," Interfaces, INFORMS, vol. 52(1), pages 8-26, January.
    14. Peters, Koen, 2024. "Operationalizing analytics to improve food security," Other publications TiSEM 4e63a46a-29eb-4845-b136-2, Tilburg University, School of Economics and Management.
    15. Ellegood, William A. & Solomon, Stanislaus & North, Jeremy & Campbell, James F., 2020. "School bus routing problem: Contemporary trends and research directions," Omega, Elsevier, vol. 95(C).
    16. Margarita P. Castro & Andre A. Cire & J. Christopher Beck, 2020. "An MDD-Based Lagrangian Approach to the Multicommodity Pickup-and-Delivery TSP," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 263-278, April.
    17. Bender, Matthias & Kalcsics, Jörg & Meyer, Anne, 2020. "Districting for parcel delivery services – A two-Stage solution approach and a real-World case study," Omega, Elsevier, vol. 96(C).
    18. Ralf Borndörfer & Thomas Eßer & Patrick Frankenberger & Andreas Huck & Christoph Jobmann & Boris Krostitz & Karsten Kuchenbecker & Kai Mohrhagen & Philipp Nagl & Michael Peterson & Markus Reuther & Th, 2021. "Deutsche Bahn Schedules Train Rotations Using Hypergraph Optimization," Interfaces, INFORMS, vol. 51(1), pages 42-62, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.
    2. repec:dar:wpaper:62383 is not listed on IDEAS
    3. Schneider, M., 2016. "The vehicle-routing problem with time windows and driver-specific times," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65941, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Zhou, Lin & Zhen, Lu & Baldacci, Roberto & Boschetti, Marco & Dai, Ying & Lim, Andrew, 2021. "A Heuristic Algorithm for solving a large-scale real-world territory design problem," Omega, Elsevier, vol. 103(C).
    5. Yang, Meng & Ni, Yaodong & Song, Qinyu, 2022. "Optimizing driver consistency in the vehicle routing problem under uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    6. Schneider, Michael, 2016. "The vehicle-routing problem with time windows and driver-specific times," European Journal of Operational Research, Elsevier, vol. 250(1), pages 101-119.
    7. Anirudh Subramanyam & Chrysanthos E. Gounaris, 2018. "A Decomposition Algorithm for the Consistent Traveling Salesman Problem with Vehicle Idling," Transportation Science, INFORMS, vol. 52(2), pages 386-401, March.
    8. Attila A. Kovacs & Bruce L. Golden & Richard F. Hartl & Sophie N. Parragh, 2015. "The Generalized Consistent Vehicle Routing Problem," Transportation Science, INFORMS, vol. 49(4), pages 796-816, November.
    9. Hoogeboom, Maaike & Dullaert, Wout, 2019. "Vehicle routing with arrival time diversification," European Journal of Operational Research, Elsevier, vol. 275(1), pages 93-107.
    10. Paola Cappanera & Maria Grazia Scutellà, 2022. "Addressing consistency and demand uncertainty in the Home Care planning problem," Flexible Services and Manufacturing Journal, Springer, vol. 34(1), pages 1-39, March.
    11. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    12. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    13. Quirion-Blais, Olivier & Chen, Lu, 2021. "A case-based reasoning approach to solve the vehicle routing problem with time windows and drivers’ experience," Omega, Elsevier, vol. 102(C).
    14. Soriano, Adria & Vidal, Thibaut & Gansterer, Margaretha & Doerner, Karl, 2020. "The vehicle routing problem with arrival time diversification on a multigraph," European Journal of Operational Research, Elsevier, vol. 286(2), pages 564-575.
    15. Zhen, Lu & Gao, Jiajing & Tan, Zheyi & Laporte, Gilbert & Baldacci, Roberto, 2023. "Territorial design for customers with demand frequency," European Journal of Operational Research, Elsevier, vol. 309(1), pages 82-101.
    16. Stavropoulou, F. & Repoussis, P.P. & Tarantilis, C.D., 2019. "The Vehicle Routing Problem with Profits and consistency constraints," European Journal of Operational Research, Elsevier, vol. 274(1), pages 340-356.
    17. Errico, F. & Desaulniers, G. & Gendreau, M. & Rei, W. & Rousseau, L.-M., 2016. "A priori optimization with recourse for the vehicle routing problem with hard time windows and stochastic service times," European Journal of Operational Research, Elsevier, vol. 249(1), pages 55-66.
    18. Michael Schneider & Andreas Stenger & Fabian Schwahn & Daniele Vigo, 2015. "Territory-Based Vehicle Routing in the Presence of Time-Window Constraints," Transportation Science, INFORMS, vol. 49(4), pages 732-751, November.
    19. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    20. Agustín Montero & Juan José Miranda-Bront & Isabel Méndez-Díaz, 2017. "An ILP-based local search procedure for the VRP with pickups and deliveries," Annals of Operations Research, Springer, vol. 259(1), pages 327-350, December.
    21. Xian Cheng & Shaoyi Liao & Zhongsheng Hua, 2017. "A policy of picking up parcels for express courier service in dynamic environments," International Journal of Production Research, Taylor & Francis Journals, vol. 55(9), pages 2470-2488, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:47:y:2017:i:1:p:8-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.