IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v53y2023i1p47-58.html
   My bibliography  Save this article

Advanced Analytics Drives Reengineering of Field Operations for the 2020 U.S. Census

Author

Listed:
  • Tamara Adams

    (U.S. Census Bureau, Washington, DC 20233)

  • Alessandro Ferrucci

    (U.S. Census Bureau, Washington, DC 20233)

  • Pedro Carvalho

    (U.S. Census Bureau, Washington, DC 20233)

  • Sothiara Em

    (U.S. Census Bureau, Washington, DC 20233)

  • Benjamin Whitley

    (U.S. Census Bureau, Washington, DC 20233)

  • Ryan Cecchi

    (U.S. Census Bureau, Washington, DC 20233)

  • Teresa Hicks

    (U.S. Census Bureau, Washington, DC 20233)

  • Alexander Wooten

    (U.S. Census Bureau, Washington, DC 20233)

  • John Cuffe

    (U.S. Census Bureau, Washington, DC 20233)

  • Stephanie Studds

    (U.S. Census Bureau, Washington, DC 20233)

  • Irvin Lustig

    (Princeton Consultants, Princeton, New Jersey 08540)

  • Steve Sashihara

    (Princeton Consultants, Princeton, New Jersey 08540)

Abstract

The U.S. Census Bureau conducts a census of population and housing every 10 years as mandated in the U.S. Constitution. Following up in person with households that do not respond online, by phone, or by mail, which is known as nonresponse follow-up (NRFU), represents a major component of this effort. For the 2010 Census, the Census Bureau equipped enumerators with paper maps and notebooks filled with questionnaires and required enumerators to go door to door and collect decennial census data. The enumerators met daily with their supervisors to return completed questionnaires and update payroll information. For the 2020 Census, an advanced analytics solution, utilizing machine learning and optimization techniques, drove a reengineering of the entire field operations process, leading to substantially reduced costs and improved productivity. These reengineering efforts included business processes and technology centered around the development of this solution, the MOJO Optimizer, and resulted in an 80% increase in the number of cases completed per hour (from 1.05 to 1.92) and a 27% decrease in the number of miles reimbursed per case (from 5.05 to 3.68) compared with the 2010 Census NRFU. Capitalizing on the massive innovations realized during decennial census operations, the Census Bureau intends to use this technology to revolutionize its over 90 active surveys.

Suggested Citation

  • Tamara Adams & Alessandro Ferrucci & Pedro Carvalho & Sothiara Em & Benjamin Whitley & Ryan Cecchi & Teresa Hicks & Alexander Wooten & John Cuffe & Stephanie Studds & Irvin Lustig & Steve Sashihara, 2023. "Advanced Analytics Drives Reengineering of Field Operations for the 2020 U.S. Census," Interfaces, INFORMS, vol. 53(1), pages 47-58, January.
  • Handle: RePEc:inm:orinte:v:53:y:2023:i:1:p:47-58
    DOI: 10.1287/inte.2022.1146
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2022.1146
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2022.1146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chuck Holland & Jack Levis & Ranganath Nuggehalli & Bob Santilli & Jeff Winters, 2017. "UPS Optimizes Delivery Routes," Interfaces, INFORMS, vol. 47(1), pages 8-23, February.
    2. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.
    2. Wolfgang Wörndl & Alexander Hefele & Daniel Herzog, 2017. "Recommending a sequence of interesting places for tourist trips," Information Technology & Tourism, Springer, vol. 17(1), pages 31-54, March.
    3. Majsa Ammouriova & Massimo Bertolini & Juliana Castaneda & Angel A. Juan & Mattia Neroni, 2022. "A Heuristic-Based Simulation for an Education Process to Learn about Optimization Applications in Logistics and Transportation," Mathematics, MDPI, vol. 10(5), pages 1-18, March.
    4. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    5. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2018. "The time-dependent pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 1-24.
    6. José Ruiz-Meza & Julio Brito & Jairo R. Montoya-Torres, 2021. "Multi-Objective Fuzzy Tourist Trip Design Problem with Heterogeneous Preferences and Sustainable Itineraries," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    7. Enzi, Miriam & Parragh, Sophie N. & Pisinger, David & Prandtstetter, Matthias, 2021. "Modeling and solving the multimodal car- and ride-sharing problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 290-303.
    8. Glock, Katharina & Meyer, Anne, 2023. "Spatial coverage in routing and path planning problems," European Journal of Operational Research, Elsevier, vol. 305(1), pages 1-20.
    9. Markus Sinnl, 2021. "Mixed-integer programming approaches for the time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 497-542, June.
    10. Stavropoulou, F. & Repoussis, P.P. & Tarantilis, C.D., 2019. "The Vehicle Routing Problem with Profits and consistency constraints," European Journal of Operational Research, Elsevier, vol. 274(1), pages 340-356.
    11. Kotiloglu, S. & Lappas, T. & Pelechrinis, K. & Repoussis, P.P., 2017. "Personalized multi-period tour recommendations," Tourism Management, Elsevier, vol. 62(C), pages 76-88.
    12. Ellegood, William A. & Solomon, Stanislaus & North, Jeremy & Campbell, James F., 2020. "School bus routing problem: Contemporary trends and research directions," Omega, Elsevier, vol. 95(C).
    13. Xia, Jun & Wang, Kai & Wang, Shuaian, 2019. "Drone scheduling to monitor vessels in emission control areas," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 174-196.
    14. Sun, Peng & Veelenturf, Lucas P. & Dabia, Said & Van Woensel, Tom, 2018. "The time-dependent capacitated profitable tour problem with time windows and precedence constraints," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1058-1073.
    15. Ahmadi-Javid, Amir & Amiri, Elahe & Meskar, Mahla, 2018. "A Profit-Maximization Location-Routing-Pricing Problem: A Branch-and-Price Algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 866-881.
    16. Margarita P. Castro & Andre A. Cire & J. Christopher Beck, 2020. "An MDD-Based Lagrangian Approach to the Multicommodity Pickup-and-Delivery TSP," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 263-278, April.
    17. Roberto Aringhieri & Sara Bigharaz & Davide Duma & Alberto Guastalla, 2022. "Fairness in ambulance routing for post disaster management," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 189-211, March.
    18. Orlis, Christos & Laganá, Demetrio & Dullaert, Wout & Vigo, Daniele, 2020. "Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements," Omega, Elsevier, vol. 93(C).
    19. Anupam Mukherjee & Partha Sarathi Barma & Joydeep Dutta & Goutam Panigrahi & Samarjit Kar & Manoranjan Maiti, 2022. "A multi-objective antlion optimizer for the ring tree problem with secondary sub-depots," Operational Research, Springer, vol. 22(3), pages 1813-1851, July.
    20. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:53:y:2023:i:1:p:47-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.