IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v103y2010i2p110-116.html
   My bibliography  Save this article

Intensive versus low-input cropping systems: What is the optimal partitioning of agricultural area in order to reduce pesticide use while maintaining productivity?

Author

Listed:
  • Gosme, Marie
  • Suffert, Frédéric
  • Jeuffroy, Marie-Hélène

Abstract

Pesticide use should be reduced for sustainable agriculture. Low-input cropping systems, centered on hardy varieties that maintain their yield in the presence of pests, allow pesticide use to be reduced. Since yield potential is generally lower for hardy varieties than for high-yielding varieties, a balance must be found between production and pesticide reduction. In order to compute the optimal partitioning of agricultural area between intensive and low-input cropping systems, we present a model that allows yield and gross margins to be computed at the landscape scale, as a function of the proportion of the area under intensive and low-input systems. The model shows that two cases must be distinguished, depending on inoculum production by each of the coexisting systems. If the low-input system produces less inoculum (e.g. because resistant varieties are used), coexistence can be optimal, whereas if the low-input system produces more inoculum (e.g. because tolerant varieties are used), it is best to devote the whole area to a single system. The model gives the gross margin for each cropping system as a function of the proportion of low-input systems - and so predicts the proportion to which the farmers' choices will lead - and illustrates the use of different (simplified) policies that would ensure that the optimum proportion is reached.

Suggested Citation

  • Gosme, Marie & Suffert, Frédéric & Jeuffroy, Marie-Hélène, 2010. "Intensive versus low-input cropping systems: What is the optimal partitioning of agricultural area in order to reduce pesticide use while maintaining productivity?," Agricultural Systems, Elsevier, vol. 103(2), pages 110-116, February.
  • Handle: RePEc:eee:agisys:v:103:y:2010:i:2:p:110-116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(09)00110-3
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Havlik, Petr & Bamiére, Laure & Jacquet, Florence & Millet, Guy, 2008. "Spatially explicit farming system modelling for an efficient agri-environmental policy design," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44172, European Association of Agricultural Economists.
    2. Pretty, J. N. & Brett, C. & Gee, D. & Hine, R. E. & Mason, C. F. & Morison, J. I. L. & Raven, H. & Rayment, M. D. & van der Bijl, G., 2000. "An assessment of the total external costs of UK agriculture," Agricultural Systems, Elsevier, vol. 65(2), pages 113-136, August.
    3. David J. Pannell, 2008. "Public Benefits, Private Benefits, and Policy Mechanism Choice for Land-Use Change for Environmental Benefits," Land Economics, University of Wisconsin Press, vol. 84(2), pages 225-240.
    4. Vanloqueren, Gaëtan & Baret, Philippe V., 2008. "Why are ecological, low-input, multi-resistant wheat cultivars slow to develop commercially? A Belgian agricultural 'lock-in' case study," Ecological Economics, Elsevier, vol. 66(2-3), pages 436-446, June.
    5. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Müller & Richard D. Robertson, 2014. "Projecting future crop productivity for global economic modeling," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 37-50, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:103:y:2010:i:2:p:110-116. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/agsy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.