IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v72y2004i3p781-822.html

Behavior in a Dynamic Decision Problem: An Analysis of Experimental Evidence Using a Bayesian Type Classification Algorithm

Author

Listed:
  • Daniel Houser
  • Michael Keane
  • Kevin McCabe

Abstract

Different people may use different strategies, or decision rules, when solving complex decision problems. We provide a new Bayesian procedure for drawing inferences about the nature and number of decision rules present in a population, and use it to analyze the behaviors of laboratory subjects confronted with a difficult dynamic stochastic decision problem. Subjects practiced before playing for money. Based on money round decisions, our procedure classifies subjects into three types, which we label "Near Rational,""Fatalist," and "Confused." There is clear evidence of continuity in subjects' behaviors between the practice and money rounds: types who performed best in practice also tended to perform best when playing for money. However, the agreement between practice and money play is far from perfect. The divergences appear to be well explained by a combination of type switching (due to learning and/or increased effort in money play) and errors in our probabilistic type assignments. Copyright The Econometric Society 2004.

Suggested Citation

  • Daniel Houser & Michael Keane & Kevin McCabe, 2004. "Behavior in a Dynamic Decision Problem: An Analysis of Experimental Evidence Using a Bayesian Type Classification Algorithm," Econometrica, Econometric Society, vol. 72(3), pages 781-822, May.
  • Handle: RePEc:ecm:emetrp:v:72:y:2004:i:3:p:781-822
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1468-0262.2004.00512.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    More about this item

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:72:y:2004:i:3:p:781-822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.