IDEAS home Printed from https://ideas.repec.org/p/sce/scecf9/1033.html
   My bibliography  Save this paper

Using Symbolic Regression to Infer Strategies from Experimental Data

Author

Listed:
  • John Duffy

    () (University of Pittsburgh)

  • Jim Warnick

    () (University of Pittsburgh)

Abstract

We propose the use of a new technique -- symbolic regression -- as a method for inferring the strategies that are being played by subjects in economic decision-making experiments. We begin by describing symbolic regression and our implementation of this technique using genetic programming. We provide a brief overview of how our algorithm works and how it can be used to uncover simple data generating functions that have the flavor of strategic rules. We then apply symbolic regression using genetic programming to experimental data from the repeated ultimatum game. We discuss and analyze the strategies that we uncover using symbolic regression and we conclude by arguing that symbolic regression techniques should at least complement standard regression analyses of experimental data.

Suggested Citation

  • John Duffy & Jim Warnick, 1999. "Using Symbolic Regression to Infer Strategies from Experimental Data," Computing in Economics and Finance 1999 1033, Society for Computational Economics.
  • Handle: RePEc:sce:scecf9:1033
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics,in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011 Elsevier.
    2. Jim Warnick, 1999. "I Can't Think With All This Noise: Inferring Strategies Using Symbolic Regression," Working Papers 99-08-057, Santa Fe Institute.
    3. Daniel Houser & Michael Keane & Kevin McCabe, 2004. "Behavior in a Dynamic Decision Problem: An Analysis of Experimental Evidence Using a Bayesian Type Classification Algorithm," Econometrica, Econometric Society, vol. 72(3), pages 781-822, May.
    4. Engle-Warnick, Jim, 2003. "Inferring strategies from observed actions: a nonparametric, binary tree classification approach," Journal of Economic Dynamics and Control, Elsevier, vol. 27(11-12), pages 2151-2170, September.
    5. Jim Engle-Warnick & Bradley Ruffle, 2006. "The Strategies Behind Their Actions: A Method To Infer Repeated-Game Strategies And An Application To Buyer Behavior," Departmental Working Papers 2005-04, McGill University, Department of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf9:1033. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sceeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.